Large-scale NN Search: Graph-based Approaches

Dr. Wan-Lei Zhao Aug. 29 2022

Contact: wlzhao@xmu.edu.cn

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

1 / 45

Outline

1 Overview about Graph-based NN Search

Online Approximate *k*-NN Graph construction

3 k-NN Graph Merge

- Symmetric Merge
- Joint Merge

Wan-Lei Zhao

・ 戸 ト ・ ヨ ト ・ ヨ ト

Nearest Neighboor Search: the problem

- Given a set of samples S in a metric space m and a query sample $q \in R^d$
- Task: find nearest neighbors from set S for sample q

• In most of the practices, the algorithm should be able to return k nearest neighbors (at least the top one)

A Glimpse over NNS History (1)

- In the whole 90s and early 00s, researchers were working on "trees"
- The introduction of Web 2.0 changes the culture

Wan-Lei Zhao

A Glimpse over NNS History (2): Divide & Conquer

Low & Dense	Low & Sparse
<u>KD-tree, R-tree</u>	<u>KD-tree, R-tree</u>
High & Dense	High & Sparse
<u>???</u>	Inverted file

- NNS on low dimensional data is solved
- NNS on sparse data is solved
- No effective solution for high and dense space

• • = • • = •

Graph-based NN Search: the idea

- Given query and the candidate set
- Sample a candidate as seed randomly
- A k-NN graph is used as a routing table
 - Expand neighbors of active points iteratively
- Climb to the query as much as we can

Graph-based NN Search: the procedure (1)

Large-scale NN Search: Graph-based Approaches

7 / 45

Graph-based NN Search: the procedure (2)

Large-scale NN Search: Graph-based Approaches

8 / 45

Outline

Online Approximate k-NN Graph construction

3) *k*-NN Graph Merge

- Symmetric Merge
- Joint Merge

3

・ 戸 ト ・ ヨ ト ・ ヨ ト

Online k-NN Graph: the motivation

- **1** To support the NN Search, *k*-NN graph is required
- 2 Existing k-NN Graph construction works on static dataset
- In practice, dynamic update (insert/delete) on the dataset should be allowed
- 4 A dynamic k-NN graph for NN search is required

Facing the similar issue as traditional relational database!

Online k-NN Graph: the idea

(b) 3-NN graph

- 1 There are 5 vertices in the graph
- **2** Vertex 6 is to be inserted
- 3 Idea: search over the graph and insert Vertex 6

Online k-NN Graph: the major issues

1 Speed-up the search

2 Find out the *k*-NN list for the new vertex as complete as possible

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

12 / 45

イロト イポト イヨト イヨト 三日

Speed-up the search: Lazy Graph Diversification (1)

Avoid the comparison with 'b' and 'c', which are close to 'a'

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

13 / 45

- 3

Speed-up the search: Lazy Graph Diversification (2)

- Idea: ignore samples that have been occluded by others
 - Sample *b* and *e* are occluded by *a*
 - This idea is not new, but it is new that we do it online
 - Existing solutions require pair-wise comparison in r's neighborhood

Speed-up the search: Lazy Graph Diversification (3)

- Make use of the distances compuated during the hill-climbing
- No additional comparison is carried out in r's neighborhood
- The num. of comparisons is reduced by 50%

Recursive Neighborhood Propagation: motivation

- We want all the NNs when query reaches the target neighborhood
- There are some samples are not compared in the dashed circle
- They are most likely to be the neighbors of sample q
- Sample q should be introduced to these samples

Restricted Recursive Neighborhood Propagation

- Sample q is introduced to the neighbors of visited samples'
- This could be done recursively for several rounds
- It turns out to be very cost-effective!!

Interpretation about these two Schemes

Figure: An illustration of "ballon" shape routing.

- **1** LGD (Lazy Graph Diversification): ignores close friends
- 2 R2NP (Restricted Recursive Neighborhood Propagation): introduced to friends' friends

Datasets used for Evaluation

Name	n	d	∦ Qry	$m(\cdot)$	Туре
Rand100K	1×10 ⁵	$3 \sim 100$	-	l ₂	synthetic
Rand100K	1×10^{5}	$3 \sim 100$	-	<i>I</i> 1	synthetic
SIFT1M	1×10 ⁶	128	1×10 ⁴	l ₂	SIFT
SIFT10M	1×10 ⁷	128	1×10^{4}	l ₂	SIFT
GIST1M	1×10 ⁶	960	1×10^{3}	l ₂	GIST
GloVe1M	1×10 ⁶	100	1×10^{3}	Cosine	Text
NUSW	22,660	500	1×10^{3}	l ₂	BoVW
NUSW	22,660	500	1×10^{3}	κ^2	BoVW
YFCC1M	1×10 ⁶	128	1×10^{4}	l ₂	Deep Feat.
Rand1M	1×10 ⁶	100	1×10^{3}	l ₂	synthetic

Table: Summary on Datasets

- Datasets from both synthetic and real world data
- Ranges from 2 to 960 dimensions
- The datasets are mainly on 1 million level

Wan-Lei Zhao

・ロト ・ 一下 ・ ト ・ ト ・ ト

Approx. k-NN Graph for real Datasets

Figure: Top-1 and Top-10 recall of k-NN graphs produced by NN-Descent, OLG and LGD⁺ on eight datasets.

Wan-Lei Zhao

20 / 45

c

Compared to Graph-based Approach (1)

Compared to Graph-based Approaches (2)

Compared to state-of-the-art NN Search

Figure: The NN search on four datasets ranging from "easy" to "hard".

- Locality Sensitive Hashing: SRS; Tree based: FLANN
- Vector quantization: PQ;
- Graph based: ANNOY, DPG, NN-Descent, HNSW
- Best performance we could reach is related to the "intrinsic dimensions"

Wan-Lei Zhao

Summary

- Advantages
 - 1 NN search is performed on a dynamic graph
 - 2 Links to k-NNs are maintained
 - **3** Outperforms most of the state-of-the-art approaches

Disadvantages

- Infeasible for GPU
- 2 Good for query arrives one-by-one

Publication

 Wan-Lei Zhao, Hui Wang, Chong-Wah Ngo, "Approximate k-NN graph construction: a generic online approach", IEEE TMM'22

伺 とう きょう とう うう

Online Approximate *k*-NN Graph construction

3 k-NN Graph Merge

- Symmetric Merge
- Joint Merge

э

• • = • • = •

Online Approximate *k*-NN Graph construction

3 k-NN Graph Merge

- Symmetric Merge
- Joint Merge

э

• • = • • = •

Why Graph Merge — Scenario 1

Figure: Scenario of merging two sub-graphs.

- 1 There are several graphs for different subsets
- 2 One wants to build a big graph for the whole set
- **3** Do not build from scratch

Why Graph Merge — Scenario 2

Figure: Scenario of merging two sub-graphs.

The dataset is big, one wants to build the graph on different nodes
 Then merge these sub-graphs

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Why Graph Merge — Scenario 3

Figure: Scenario of merging two sub-graphs.

1 There are a graph

2 New samples arrive in batches

• • = • • = •

Symmetric Merge: the problem

Figure: Scenario of merging two sub-graphs.

- We need to combine two graphs
- We do not want to re-compute everything from scratch

Symmetric Merge: the idea (1)

31 / 45

イロト 不得 トイヨト イヨト 二日

Symmetric Merge: the procedure

Figure: The whole flow of S-Merge.

1 Cut out rear $\frac{k}{2}$ samples from each NN list in each graph

- 2 Append $\frac{k}{2}$ random samples to each NN list
 - Random samples are from counter-part graph
- 3 Combine two grahs and perform NN-Descent
- 4 Merge with cut-out rear lists

Wan-Lei Zhao

k-NN Graph Merge

Symmetric Merge

Symmetric Merge (S-Merge): summary

Figure: The whole flow of S-Merge.

- 1 Comparison happens only between samples from different graphs
- 2 Make use of existing sub-graph structures
- 3 Start from a half-baked graph, which is more cost-efffective

Online Approximate *k*-NN Graph construction

3 k-NN Graph Merge

- Symmetric Merge
- Joint Merge

A = A A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Joint Merge: the idea

Figure: Scenario of Joint Merge.

- We need to join a raw sample set into a sub-graph
- We do not want to re-compute everything from scratch
- NN-Descent + S-Merge will address this issue
- However, a better solution exists

Wan-Lei Zhao

Joint Merge: the idea

• We need to join a raw sample set into a sub-graph

3

(日)

Graph werge John

Joint Merge: the procedure

Figure: The whole flow of Joint Merge.

1 Cut out rear $\frac{k}{2}$ samples from each NN list of the 1st graph

- 2 Append $\frac{k}{2}$ random samples to each NN list
- **3** Initialize a random *k*-NN graph for the 2nd set
 - Random samples are from both sets
- 4 Combine two grahs and perform NN-Descent
- **5** Merge with cut-out rear lists

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

37 / 45

Joint Merge (J-Merge): summary

Figure: The whole flow of J-Merge.

- Comparison happens only between samples from different graphs and within the 2nd
- 2 Make use of the first sub-graph structure
- It is more efficient than NN-Descent+S-Merge solution

Wan-Lei Zhao

k-NN Graph Construction on Big data

Figure: The strategy for k-NN graph construction on big data

Memory cannot hold the whole data, divide data into blocks

- Build *k*-NN graph for each block 2
- Perform cross-merging between every two sub graphs (=)

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

Performance Evaluation (1)

- The merge algorithms run on NVidia 3090 GPU
- GNND is our approach

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

40 / 45

・ロト ・ 一下 ・ ト ・ ト ・ ト

Performance Evaluation (2)

Table: Performance of k-NN graph Constr. on Billion-scale

	G	NND	FAISS-IVFPQ		
Dataset	Time	Recall@10	Time	Recall@10	
SIFT100M	2,583s	0.764	2,739s	0.702	
SIFT100M	3,033s	0.966	4,469s	0.730	
DEEP100M	2,364s	0.767	2,331s	0.705	
DEEP100M	2,888s	0.956	4,262s	0.770	
SIFT1B	77h	0.955	-	-	
DEEP1B	76h	0.951	-	-	

- Outperforms state-of-the-art by large margin
- We are able to construct *k*-NN graph for billion-scale data with high quality

イロト 不得 トイヨト イヨト 二日

S-Merge and J-Merge: summary

Figure: Two types of *k*-NN graph merge.

- This approach has been integrated in a face-recogition system
- Serves for more than 6 million people
- Publications
 - Wan-Lei Zhao, Hui Wang, Peng-Cheng Lin, Chong-Wah Ngo, "On the Merge of k-NN graph", IEEE TBD'21
 - 2 Hui Wang, Wan-Lei Zhao, et.al, "Fast k-NN Graph Construction by GPU based NN-Descent", CIKM'21

Recent Progress: work submitted

Figure: NN search on GPU.

- Experiments are pulled out on NVidia 3090
- Outperforms all the approaches in the literature
- > 30,000 queries per second

Wan-Lei Zhao

43 / 45

э

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

44 / 45

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Thanks for your attention!

Wan-Lei Zhao

Large-scale NN Search: Graph-based Approaches

≣ ▶ ≣ 45 / 45

イロト イボト イヨト イヨト