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Overview about Graph-based NN Search

Nearest Neighboor Search: the problem

® Given a set of samples S in a metric space m and a query sample
d
geR

® Task: find nearest neighbors from set S for sample g

® |n most of the practices, the algorithm should be able to return k
nearest neighbors (at least the top one)
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Overview about Graph-based NN Search

A Glimpse over NNS History (1)

File management
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® |n the whole 90s and early 00s, researchers were working on “trees”
® The introduction of Web 2.0 changes the culture



Overview about Graph-based NN Search

A Glimpse over NNS History (2): Divide & Conquer

Low & Dense
KD-tree, R-tree

Low & Sparse
KD-tree, R-tree

High & Dense
222

High & Sparse
Inverted file

® NNS on low dimensional data is solved

® NNS on sparse data is solved

® No effective solution for high and dense space
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Overview about Graph-based NN Search

Graph-based NN Search: the idea
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® Given query and the candidate set

Sample a candidate as seed randomly

A k-NN graph is used as a routing table
® Expand neighbors of active points iteratively

Climb to the query as much as we can



Overview about Graph-based NN Search

Graph-based NN Search: the procedure (1)

@ candidates @ candidates

® query @ query

© active point © active point

® k-NNof © ® k-NNof ©
O visited point

@ candidates @ candidates

® query @ query

© active point © active point

@® k-NNof © @® k-NNof ©

O Vvisited point O visited point




Overview about Graph-based NN Search

Graph-based NN Search: the procedure (2)

@ candidates @ candidates
@ query @ query

© active point © active point
@® k-NNof © ® k-NNof ©
O visited point O visited point
@ candidates © candidates
@ query @ query

© active point © active point
® k-NNof © ® k-NNof ©
O visited point O visited point

(g) Step-7
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Outline _

Overview about Graph-based NN Search

© Online Approximate k-NN Graph construction

k-NN Graph Merge
@ Symmetric Merge
@ Joint Merge
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Online Approximate k-NN Graph construction

Online k-NN Graph: the motivation

@ To support the NN Search, k-NN graph is required
® Existing k-NN Graph construction works on static dataset

© In practice, dynamic update (insert/delete) on the dataset should be
allowed

O A dynamic k-NN graph for NN search is required

Facing the similar issue as traditional
relational database!



Online Approximate k-NN Graph construction

Online k-NN Graph: the idea
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(a) 3-NN lists (b) 3-NN graph

@ There are 5 vertices in the graph
@® \/ertex 6 is to be inserted
© Idea: search over the graph and insert Vertex 6




Online k-NN Graph: the major issu_

@ Speed-up the search

® Find out the k-NN list for the new vertex as complete as possible



Online Approximate k-NN Graph construction

Speed-up the search: Lazy Graph Diversification (1)
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Avoid the comparison with ‘b’ and ‘c’, which are close to ‘a’
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Online Approximate k-NN Graph construction

Speed-up the search: Lazy Graph Diversification (2)
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® |dea: ignore samples that have been occluded by others
® Sample b and e are occluded by a
® This idea is not new, but it is new that we do it online
® Existing solutions require pair-wise comparison in r's neighborhood




Online Approximate k-NN Graph construction

Speed-up the search: Lazy Graph Diversification (3)
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® Make use of the distances compuated during the hill-climbing
® No additional comparison is carried out in r's neighborhood

® The num. of comparisons is reduced by 50%



Online Approximate k-NN Graph construction

Recursive Neighborhood Propagation: motivation
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We want all the NNs when query reaches the target neighborhood

There are some samples are not compared in the dashed circle

® They are most likely to be the neighbors of sample g

Sample g should be introduced to these samples



Online Approximate k-NN Graph construction

Restricted Recursive Neighborhood Propagation

@ Query sample

O Sample being visited
O Sample not visited
Q Vertex r

%} k-neighborhood of r

© Propagated neighbor

(a) Depth-1 (b) Depth-2 (c) Depth-3

® Sample g is introduced to the neighbors of visited samples’
® This could be done recursively for several rounds

® |t turns out to be very cost-effectivel!!



Online Approximate k-NN Graph construction

Interpretation about these two Schemes

Query sample

Seed

Sample being visited
Sample not visited
Vertex r

00000

{_ Close friend circle

Figure: An illustration of “ballon” shape routing.

@ LGD (Lazy Graph Diversification): ignores close friends

® R2NP (Restricted Recursive Neighborhood Propagation): introduced
to friends’ friends



Online Approximate k-NN Graph construction

Datasets used for Evaluation

Table: Summary on Datasets

[ Name | n [ d [#Qry [ m() Type |
Rand100K |[ 1x10° | 3 ~ 100 - h synthetic
Rand100K || 1x10° | 3 ~ 100 - I synthetic
SIFT1IM 1x10° 128 1x10% b SIFT
SIFT10M 1x107 128 1x10% A SIFT
GIST1M 1x10° 960 1x103 b GIST
GloVelM 1x10° 100 1x103 | Cosine Text
NUSW 22,660 500 1x103 b BoVW
NUSW 22,660 500 1x103 w2 BoVW
YFCC1M 1x10° 128 1x10% h Deep Feat.
Rand1M 1x10° 100 1x103 h synthetic

® Datasets from both synthetic and real world data

® Ranges from 2 to 960 dimensions

® The datasets are mainly on 1 million level

Wan-Lei Zhao
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Online Approximate k-NN Graph construction

Approx. k-NN Graph for real Datasets
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Figure: Top-1 and Top-10 recall of k-NN graphs produced by NN-Descent, OLG
and LGD™ on eight datasets.
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Online Approximate k-NN Graph construction

Compared to Graph-based Approach (1)
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Online Approximate k-NN Graph construction

aches (2)

Compared to Graph-based Appro

Wan-Lei Zhao
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Online Approximate k-NN Graph construction

Compared to state-of-the-art NN Search
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Figure: The NN search on four datasets ranging from “easy” to “hard”.

® |ocality Sensitive Hashing: SRS; Tree based: FLANN

® \ector quantization: PQ;

® Graph based: ANNQY, DPG, NN-Descent, HNSW

® Best performance we could reach is related to the “intrinsic
dimensions”



Online Approximate k-NN Graph construction

Summary

® Advantages

@ NN search is performed on a dynamic graph
@® Links to k-NNs are maintained
©® Outperforms most of the state-of-the-art approaches

® Disadvantages

@ Infeasible for GPU
@® Good for query arrives one-by-one

® Puyblication

@ Wan-Lei Zhao, Hui Wang, Chong-Wah Ngo, “Approximate k-NN graph
construction: a generic online approach”, IEEE TMM'22
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Overview about Graph-based NN Search

Online Approximate k-NN Graph construction

© Kk-NN Graph Merge

@ Symmetric Merge
o Joint Merge

Do
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Symmetric Merge
Outline

Overview about Graph-based NN Search

Online Approximate k-NN Graph construction

© Kk-NN Graph Merge

@ Symmetric Merge
o Joint Merge
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k-NN Graph Merge

Why Graph Merge — Scenario 1

Figure: Scenario of merging two sub-graphs.
@ There are several graphs for different subsets

® One wants to build a big graph for the whole set
® Do not build from scratch



k-NN Graph Merge

Why Graph Merge — Scenario 2

graphl graph2
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Node 4 Node 5

Figure: Scenario of merging two sub-graphs.

@ The dataset is big, one wants to build the graph on different nodes
® Then merge these sub-graphs
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k-NN Graph Merge

Why Graph Merge — Scenario 3

©\ @
—®

Figure: Scenario of merging two sub-graphs.

@ There are a graph

® New samples arrive in batches
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k-NN Graph Merge

Symmetric Merge: the problem

(a) Initial

Figure: Scenario of merging two sub-graphs.

® We need to combine two graphs

® We do not want to re-compute everything from scratch



k-NN Graph Merge

Symmetric Merge: the idea (1)

(a) Initial (b) Final
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k-NN Graph Merge

Symmetric Merge: the procedure
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Figure: The whole flow of S-Merge.
@ Cut out rear g samples from each NN list in each graph

® Append g random samples to each NN list
® Random samples are from counter-part graph

©® Combine two grahs and perform NN-Descent
O Merge with cut-out rear lists
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k-NN Graph Merge

Symmetric Merge (S-Merge): summary

-
THZ-E] L @

(1] =tal
E-m-E !
!I 21 -Em-a] 21 a0
l._._'>:> 31 | NN-De:Scent 3] 1a]
GETeELE] | 2l [b] [a]]
, | |

B hEbE ! RPEPE

|l
L]

=M
][]

Figure: The whole flow of S-Merge.
@ Comparison happens only between samples from different graphs

® Make use of existing sub-graph structures
© Start from a half-baked graph, which is more cost-efffective
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Joint Merge
Outline

Overview about Graph-based NN Search

Online Approximate k-NN Graph construction

© Kk-NN Graph Merge

@ Symmetric Merge
o Joint Merge
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k-NN Graph Merge

Joint Merge: the idea

@
S ®

—

Figure: Scenario of Joint Merge.

We need to join a raw sample set into a sub-graph

We do not want to re-compute everything from scratch

NN-Descent + S-Merge will address this issue

® However, a better solution exists
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k-NN Graph Merge

Joint Merge: the idea

(a) Initial (b) Final

® We need to join a raw sample set into a sub-graph
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k-NN Graph Merge

Joint Merge: the procedure

SRR 5 6Y @l

[EIlg P Ful
i z>__ €] v BL-ERE

Bho , Q; G HEPE
B0 i
o |

Figure: The whole flow of Joint Merge.

k

© Cut out rear 5 samples from each NN list of the 1st graph

@ Append & > random samples to each NN list
© Initialize a random k-NN graph for the 2nd set
® Random samples are from both sets

O Combine two grahs and perform NN-Descent
@ Merge with cut-out rear lists



k-NN Graph Merge

Joint Merge (J-Merge): summary
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Figure: The whole flow of J-Merge.

@ Comparison happens only between samples from different graphs and
within the 2nd

® Make use of the first sub-graph structure
© It is more efficient than NN-Descent+S-Merge solution



k-NN Graph Merge

k-NN Graph Construction on Big data

Big Data
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Figure: The strategy for k-NN graph construction on big data
@ Memory cannot hold the whole data, divide data into blocks
® Build k-NN graph for each block

© Perform cross-merging between every two sub-graphs
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k-NN Graph Merge

Performance Evaluation (1)
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® The merge algorithms run on NVidia 3090 GPU
® GNND is our approach



k-NN Graph Merge

Performance Evaluation (2)

Table: Performance of k-NN graph Constr. on Billion-scale

GNND FAISS-IVFPQ
Dataset Time  Recall@10 | Time  Recall@10
SIFT100M | 2,583s 0.764 2,739s 0.702
SIFT100M | 3,033s 0.966 4,469s 0.730
DEEP100M | 2,364s 0.767 2,331s 0.705
DEEP100M | 2,888s 0.956 4,262s 0.770
SIFT1B 77h 0.955 - -
DEEP1B 76h 0.951 - -

e Qutperforms state-of-the-art by large margin

® \We are able to construct k-NN graph for billion-scale data with high
quality
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k-NN Graph Merge

S-Merge and J-Merge: summary

T ® @

90 ©

(c) S-Merge (d) J-Merge

Figure: Two types of k-NN graph merge.

® This approach has been integrated in a face-recogition system
® Serves for more than 6 million people

® Publications
@ Wan-Lei Zhao, Hui Wang, Peng-Cheng Lin, Chong-Wah Ngo, “On the Merge of
k-NN graph”, IEEE TBD'21
@ Hui Wang, Wan-Lei Zhao, et.al, “Fast k-NN Graph Construction by GPU based
NN-Descent”, CIKM'21



k-NN Graph Merge

Recent Progress: work submitted
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Figure: NN search on GPU.

® Experiments are pulled out on NVidia 3090
® Qutperforms all the approaches in the literature
® > 30,000 queries per second
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Thanks for your attention!
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