Visual Instance Search based-on Pretrained Network

Dr. Wan-Lei *Zhao* Jul. 21 2020

Contact: wlzhao@xmu.edu.cn

Wan-Lei Zhao

Visual Instance Search based-on Pretrained Network

1 / 24

Outline

イロト イボト イヨト イヨト

Instance Search: the problem

• Instance search is widely used in various multimedia applications

- video editing, image hyperlink and online shopping, etc.
- Instance: any semantically meaningful visual subject

・ 同 ト ・ ヨ ト ・ ヨ ト

Existing Solutions and Challenges (1)

Image-search based solutions

- Features are aggregated from several local regions into a global feature
- Several weighting strategies are employed to highlight instances
- e.g., R-MAC, CroW, CAM, BLCF-SalGAN, and Regional Attention

Advantages

- Only pre-trained models are required
- Challenges
 - Features are not discriminative for instance search
 - The instance localization are unfeasible

・ 同 ト ・ ヨ ト ・ ヨ ト

Existing Solutions and Challenges (2)

- Instance-level solutions
 - Instances are localized using object detection or segmentation framework
 - For instance, DeepVision, FCIS+XD and PCL*+SPN
- Advantages
 - Instance-level localizations and features are obtained
- Challenges
 - The training conditions are demanding
 - Generalization to the unseen categories is nearly impossible

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

The Aim of our Design

- Class-agonistic
- 2 Instance localization
- 3 High discriminative of the instance level feature

< ロ > < 同 > < 三 > < 三 >

Motivation: the idea

- The last convolution layer preserves class-agnostic clues for latent instances
 - They are not suppressed in the prediction layer yet

< ロ > < 同 > < 三 > < 三 >

The Framework

- Peaks in the forward-pass indicate the latent instances (of both known and unknown)
- A back-propagation process is leveraged to highlight instance regions
- Instance-level features are extracted with localization results

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Back-propagation in One Layer in Detail

• A top-down probability model is introduced

Wan-Lei Zhao

Visual Instance Search based-on Pretrained Network

9 / 24

Instance Localization with Second Moment Matrix

$$\sum_{r(x,y)\geq\tau} \begin{bmatrix} x^2 & x \cdot y \\ x \cdot y & y^2 \end{bmatrix}$$
(3)

- The second moment matrix is employed to estimate the instance shape
- The final localizations are the circumscribed rectangles of the estimated ellipses

More Salient region: DASR*

- Remaining issues
 - Different instances share one latent response peak
 - Different peaks indicate nearly the same region
- Solutions
 - More pixels are back-propagated
 - Non-maximum suppression (NMS) is employed to reduce the representation redundancy and select out the most salient regions

Ablation Study (1): layer for feature-pooling

- Experiments are conducted with ResNet-50 and Vgg-16
- Features derived from ResNet-50 are much distinctive

Wan-Lei Zhao

Ablation Study (2): DASR vs. DASR*

- DASR* outperforms DASR when $\beta > 0.1$
- The larger overlapping rate β leads to better performance

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

How about Back-propagating from the Last Layer

 Comparing with the approaches back-propagated from the last layer, DASR enables to localize class-agnostic instances with bounding boxes.

14 / 24

Instance Search Results on Two Benchmarks

Approach	Model-Type	Loc.	Dim.	Instance-335			INISTRE
Approach				Top-50	Top-100	All	INSTRE
R-MAC	pre-trained	image	512	0.234	0.315	0.375	0.523
CroW	pre-trained	image	512	0.159	0.225	0.321	0.416
CAM	pre-trained	image	512	0.194	0.263	0.347	0.320
BLCF	pre-trained	image	336	0.246	0.358	0.483	0.636
BLCF-SalGAN	pre-trained	image	336	0.245	0.350	0.469	0.698
Regional Attention	pre-trained	image	2,048	0.242	0.351	0.488	0.542
DeepVision	strong	region	512	0.402	0.521	0.620	0.197
FCIS+XD	strong	pixel	1,536	0.403	0.500	0.593	0.067
PCL*+SPN	weak	region	1,024	0.380	0.475	0.580	0.575
DASR	pre-trained	region	2,048	0.419	0.558	0.699	0.629
DASR*	pre-trained	region	2,048	0.433	0.580	0.724	0.647
DASR-m	pre-trained	region	2,048	0.411	0.533	0.662	0.671
DASR-m*	pre-trained	region	2,048	0.428	0.560	0.694	0.692

- DASR outperforms many weakly supervised approaches
- The only pre-trained model that achieves region level localization

Wan-Lei Zhao

向下 イヨト イヨト ニヨ

Localization Accuracy

 DASR* shows superior performance compared to weakly supervised model PCL*+SPN

16 / 24

3 x 3

Instance Search Results in Large-scale

 DASR* outperforms all the approaches, including FCIS+XD based on a fully supervised model

17 / 24

Instance Search Samples

- It is meaningful even for false-positive samples
- DASR fails when the object is in small-scale (< 32×32 pixels)

Wan-Lei Zhao

Visual Instance Search based-on Pretrained Network

3

▲ □ ▶ ▲ □ ▶ ▲

DASR for Image Search: the idea

- DASR features are considered as instance level features
- DASR features could be aggregated into image level feature via VLAD

Image Search Results

Method	Dim.	Holidays	Oxford5k	Paris6k
BoVW+HE	65,536	0.742	0.503	0.501
SIFT+VLAD*	8,192	0.664	0.359	0.391
R-MAC	512	-	0.669	0.830
CroW	512	0.851	0.708	0.797
CAM	512	0.785	0.712	0.805
BLCF	336	0.854	0.722	0.798
BLCF-SalGAN	336	0.835	0.746	0.812
Regional Attention	2,048	-	0.768	0.875
DeepVision	512	-	0.710	0.798
DASR+VLAD	8,192	0.834	0.594	0.690
DASR*+VLAD	8,192	0.873	0.613	0.744

- It is competitive to features specfically designed for image-level search
- It becomes possible to integrate instance-level and image-level search under one framework

< ロ > < 同 > < 回 > < 回 >

How DASRs are Distributed in a Natural Image

Wan-Lei Zhao

Visual Instance Search based-on Pretrained Network

21 / 24

∍⊳

(日)

э

Summary

- Advantages
 - No additional training data or training stage is required
 - Localization of latent foreground instances is feasible
 - The pipeline can be carried out using any CNN classification network

< ロ > < 同 > < 回 > < 回 > < 回 > <

Wan-Lei Zhao

Visual Instance Search based-on Pretrained Network

23 / 24

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの

Thanks for your attention!

Wan-Lei Zhao

Visual Instance Search based-on Pretrained Network

<ロト < 同ト < ヨト < ヨト