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DASR for Instance Search

Instance Search: the problem

Database Query

® |nstance search is widely used in various multimedia applications

® video editing, image hyperlink and online shopping, etc.
® |nstance: any semantically meaningful visual subject
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DASR for Instance Search

Existing Solutions and Challenges (1)

® |mage-search based solutions

® Features are aggregated from several local regions into a global feature
® Several weighting strategies are employed to highlight instances
® eg., R-MAC, CroW, CAM, BLCF-SalGAN, and Regional Attention

® Advantages
® Only pre-trained models are required
® Challenges

® Features are not discriminative for instance search
® The instance localization are unfeasible



DASR for Instance Search

Existing Solutions and Challenges (2)

® |nstance-level solutions

® |nstances are localized using object detection or segmentation
framework
® For instance, DeepVision, FCIS+XD and PCL*+SPN

® Advantages
® |nstance-level localizations and features are obtained
® Challenges

® The training conditions are demanding
® Generalization to the unseen categories is nearly impossible



The Aim of our Design _

@ Class-agonistic

® Instance localization

® High discriminative of the instance level feature
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DASR for Instance Search

Motivation: the idea
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® The last convolution layer preserves class-agnostic clues for latent
instances

® They are not suppressed in the prediction layer yet




DASR for Instance Search

The Framework
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® Peaks in the forward-pass indicate the latent instances (of both
known and unknown)

Mean activation map

Features

Point-wise
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® A back-propagation process is leveraged to highlight instance regions

® |nstance-level features are extracted with localization results
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DASR for Instance Search

Back-propagation in One Layer in Detalil
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® A top-down probability model is introduced
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DASR for Instance Search

Instance Localization with Second Moment Matrix
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® The second moment matrix is employed to estimate the instance
shape

® The final localizations are the circumscribed rectangles of the
estimated ellipses
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DASR for Instance Search

More Salient region: DASR*

® Remaining issues
® Different instances share one latent response peak
® Different peaks indicate nearly the same region

e Solutions

® More pixels are back-propagated
® Non-maximum suppression (NMS) is employed to reduce the
representation redundancy and select out the most salient regions



Ablation Study (1): layer for feature-po
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feature layer

® Experiments are conducted with ResNet-50 and Vgg-16

® Features derived from ResNet-50 are much distinctive
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DASR for Instance Search

Ablation Study (2): DASR vs. DASR*
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e DASR* outperforms DASR when 5 > 0.1

® The larger overlapping rate ( leads to better performance
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DASR for Instance Search

How about Back-propagating from the Last Layer
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e Comparing with the approaches back-propagated from the last layer,

DASR enables to localize class-agnostic instances with bounding
boxes.
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DASR for Instance Search

Instance Search Results on Two Benchmarks

Approach Model-Type | Loc. | Dim. Top_5o"“5$o”pc_el‘o3§5‘ A INSTRE
R-MAC pre-trained | image | 512 | 0.234 0.315 | 0.375 | 0.523
CroW pre-trained | image | 512 0.159 0.225 0.321 0.416
CAM pre-trained | image | 512 0.194 0.263 0.347 0.320
BLCF pre-trained | image | 336 | 0.246 0.358 | 0.483 | 0.636
BLCF-SalGAN pre-trained | image | 336 | 0.245 0.350 | 0.469 | 0.698
Regional Attention | pre-trained | image | 2,048 | 0.242 0.351 0.488 0.542
DeepVision strong region | 512 0.402 0.521 0.620 0.197
FCIS+XD strong pixel | 1,536 | 0.403 0.500 | 0.593 | 0.067
PCL*+SPN weak region | 1,024 | 0.380 0.475 0.580 0.575
DASR pre-trained | region | 2,048 | 0.419 0.558 0.699 0.629
DASR* pre-trained | region | 2,048 | 0.433 | 0.580 | 0.724 | 0.647
DASR-m pre-trained | region | 2,048 | 0.411 0.533 0.662 0.671
DASR-m* pre-trained | region | 2,048 | 0.428 0.560 0.694 0.692

e DASR outperforms many weakly supervised approaches

® The only pre-trained model that achieves region level localization
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DASR for Instance Search

Localization Accuracy
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® DASR* shows superior performance compared to weakly supervised
model PCL*+SPN
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DASR for Instance Search

Instance Search Results in Large-scale
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® DASR* outperforms all the approaches, including FCIS+XD based on

a fully supervised model
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DASR for Instance Search

Instance Search Samples

® |t is meaningful even for false-positive samples
® DASR fails when the object is in small-scale (< 32x32 pixels)



DASR for Instance Search

DASR for Image Search: the idea

o DASR features are considered as instance level features

® DASR features could be aggregated into image level feature via VLAD
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DASR for Instance Search

Image Search Results

[ Method [ Dim. [ Holidays [ Oxfordbk [ Parisbk ]
BoVW+HE 65,536 0.742 0.503 0.501
SIFT+VLAD* 8,192 0.664 0.359 0.391
R-MAC 512 - 0.669 0.830
CroW 512 0.851 0.708 0.797
CAM 512 0.785 0.712 0.805
BLCF 336 0.854 0.722 0.798
BLCF-SalGAN 336 0.835 0.746 0.812
Regional Attention 2,048 - 0.768 0.875
DeepVision 512 - 0.710 0.798
DASR+VLAD 8,192 0.834 0.594 0.690
DASR*+VLAD 8,192 0.873 0.613 0.744

® |t is competitive to features specfically designed for image-level search

® |t becomes possible to integrate instance-level and image-level search
under one framework
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DASR for Instance Search

How DASRs are Distributed in a Natural Image




DASR for Instance Search

Summary

® Advantages

® No additional training data or training stage is required
® Localization of latent foreground instances is feasible
® The pipeline can be carried out using any CNN classification network
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Thanks for your attention!
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