Trend Prediction and Anomaly Detection on ITOps Series

Dr. Wan-Lei *Zhao*

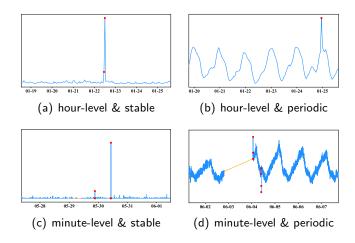
Sep. 8 2022

Contact: wlzhao@xmu.edu.cn

Wan-Lei Zhao Trend Prediction and Anomaly Detection on ITOps Series

1 / 22

Outline



Anomaly Detection and Trend Prediction by LSTM

Online Matrix Profile for Anomaly Detection

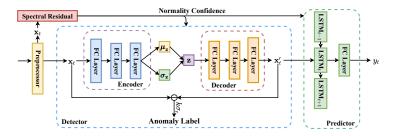
・ロト ・ 四 ト ・ 日 ト ・ 日 ト

Anomaly Detection and Trend Prediction: the problem

- Anomalies are marked in red
- Aims: detect the anomalies and predict the normal trend

Wan-Lei Zhao

Trend Prediction and Anomaly Detection on ITOps Series


Existing Solutions

Prediction

- ARIMA: Autoregressive Integrated Moving Average model
- LSTM: Long-term Short Term Memory
- VAE: Variational Auto-Encoder
- Prophet: developped by Facebook
- 2 Detection
 - SPOT: based on Isolation Forest
 - SR: Spectral Residual

< ロ > < 同 > < 回 > < 回 > < 回 > <

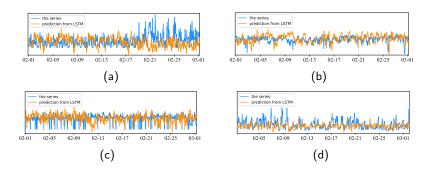
Framework of our Solution

- The VAE block shown inside the blue box in charge of detection
- SR is integrated to associate a normality score for each timestamp
- Then re-encoded signal by VAE is fed into LSTM for robust prediction

Anomaly Detection and Trend Prediction by LSTM

Performance Evaluation: the dataset (1)

Table: Summary over the datasets


Dataset	# Series	# Time-stamps	# Anomalies	Gran.
KPI	29	5,922,913	134,114 (2.26%)	Minute
Yahoo	367	572,966	3,896 (0.68%)	Hour

- KPI is built by "AIOps challenge Competition"
- **Yahoo** is built by Yahoo, data both from real scenarios and synthesized

イロト イポト イヨト イヨト 三日

Anomaly Detection and Trend Prediction by LSTM

Performance Evaluation: the dataset (2)

- Four sample series from Yahoo
- Along with the prediction from original LSTM
- LSTM fails on irregular patterns

Wan-Lei Zhao

7 / 22

(日)

Anomaly Detection and Trend Prediction by LSTM

Performance Evaluation: the measures

Measures for Prediction task

$$MSE = \frac{1}{n - \Omega} \sum_{t=\Omega}^{n-1} (x_{t+1} - y_t)^2$$
(1)

$$\mathsf{RMSE} = \sqrt{\frac{1}{n - \Omega} \sum_{t=\Omega}^{n-1} (x_{t+1} - y_t)^2}$$
(2)
$$\mathsf{MAE} = \frac{1}{n - \Omega} \sum_{t=\Omega}^{n-1} |x_{t+1} - y_t|,$$
(3)

• Measures for Detection task

$$precision = \frac{\#True \text{ positive}}{\#True \text{ positive}}$$
(4)

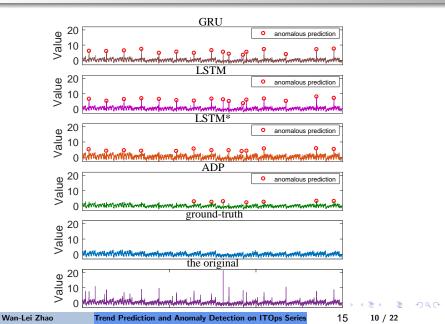
$$recall = \frac{\#True \text{ positive}}{\#True \text{ positive}}$$
(5)

$$F_{1}\text{-score} = \frac{2 \times \text{precision} \times \text{recall}}{\frac{\text{precision} + \text{recall}}{\text{precision} + \text{recall}}$$
(6)

$$F_{1}\text{-score} = \frac{2 \times \text{precision} \times \text{recall}}{\frac{1}{\text{precision} + \text{recall}}}$$
(6)

 $t=\Omega$

Performance on Prediction task


Table: The prediction performance of ADP in comparison to ARIMA, Prophet, GRU, LSTM and LSTM* on ${\bf KPI}$ dataset

	ARIMA	Prophet	GRU	LSTM	LSTM*	AD-P	ADP-	ADP
MSE ₁	0.8489	1.5447	0.2790	0.2750	0.2628	0.3068	0.2884	0.2906
RMSE ₁	0.8735	1.1053	0.3669	0.3698	0.3682	0.3967	0.3849	0.3859
MAE ₁	0.6149	0.8415	0.1803	0.1836	0.2353	0.1819	0.1726	0.1723
MSE ₂	0.6278	1.3101	0.1850	0.1866	0.3215	0.1298	0.1107	0.1086
RMSE ₂	0.7448	0.9777	0.3293	0.3349	0.4227	0.2957	0.2761	0.2724
MAE ₂	0.6048	0.8253	0.1870	0.1904	0.2475	0.1828	0.1740	0.1704
MSE ₃	0.6345	1.3227	0.1446	0.1441	0.2463	0.1201	0.1069	0.1059
RMSE ₃	0.7606	0.9910	0.2632	0.2680	0.3502	0.2709	0.2602	0.2598
MAE ₃	0.6014	0.8240	0.1727	0.1758	0.2309	0.1717	0.1629	0.1625

Trend Prediction and Anomaly Detection on ITOps Series

イロト イボト イヨト イヨト

Performance on Prediction: result samples

Performance on Detection task

Table: Performance comparison on Anomaly Detection on **KPI** and **Yahoo**. The supervised approach is marked with '*'

	KPI			Yahoo			
Approach	F ₁ -score	Precision	Recall	F ₁ -score	Precision	Recall	
OCSVM	0.183	0.144	0.251	0.026	0.013	0.803	
VAE-LSTM	0.061	0.033	0.423	0.026	0.014	0.244	
SPOT	0.217	0.786	0.126	0.338	0.269	0.454	
DSPOT	0.521	0.623	0.447	0.316	0.241	0.458	
DONUT	0.595	0.735	0.500	0.501	0.669	0.401	
SR	0.622	0.647	0.598	0.563	0.451	0.747	
VAE	0.685	0.725	0.648	0.642	0.773	0.549	
*SR-CNN	0.771	0.797	0.747	0.652	0.816	0.542	
AD	0.726	0.884	0.615	0.737	0.806	0.678	
ADP-	0.711	0.757	0.670	0.734	0.881	0.630	
ADP	0.739	0.839	0.660	0.755	0.837	0.688	

Trend Prediction and Anomaly Detection on ITOps Series

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

Summary

Advantages

1 High precisions are achieved for both detection and prediction tasks

Disadvantages

1 One model should be trained for one time series

2 It is not adaptive to the moving trend

Publication

Run-Qing Chen, Guang-Hui Shi, Wan-Lei Zhao*, Chang-Hui Liang, "A Joint Model for IT Operation Series Prediction and Anomaly Detection", Neurocomputing'21

< ロ > < 同 > < 回 > < 回 > < 回 > <

Outline

2 Online Matrix Profile for Anomaly Detection

Trend Prediction and Anomaly Detection on ITOps Series

イロト 不得 トイヨト イヨト 三日

Matrix Profile

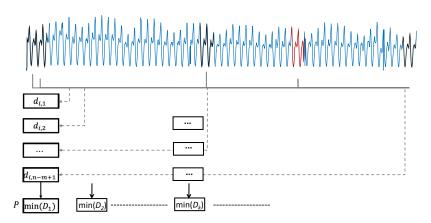
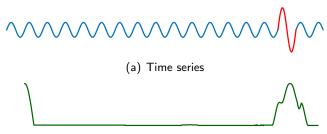


Figure: The demonstration of Matrix profile.

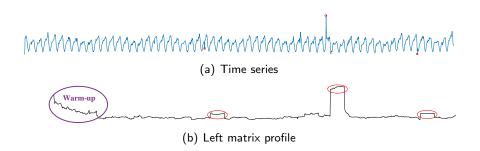

• Find out the closest subcurve for each subcurve (taking min(\cdot))

Wan-Lei Zhao

Trend Prediction and Anomaly Detection on ITOps Series

14 / 22

Left Matrix Profile

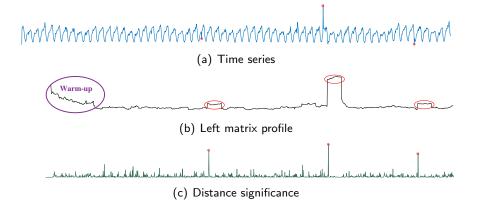

(b) Left matrix profile without standard deviation alignment

- Anomaly on sin curve marked in red
- We only know the timestamps already occurred
- Left matrix profile is caculated

Wan-Lei Zhao

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Left Matrix Profile


- Only timestamps on the left are known
- Distance significance on left matrix profile

Wan-Lei Zhao

Trend Prediction and Anomaly Detection on ITOps Series

16 / 22

Distance Significance

- Distance significance shows high response on low energy signal
- It is more precise than original left matrix profile

Wan-Lei Zhao

17 / 22

Performance Evaluation (1)

Table: Ablation study about OMP on **KPI** and **Yahoo**. cache: cache strategy, DS: distance significance, SR: spectral residual

		KPI			Yahoo	
Approach	F ₁ -score	Precision	Recall	F ₁ -score	Precision	Recall
SR	0.622	0.647	0.598	0.563	0.451	0.747
MP	0.525	0.424	0.687	0.599	0.679	0.536
MP*	0.597	0.565	0.633	0.752	0.750	0.753
MP*+cache	0.541	0.495	0.597	0.752	0.710	0.799
MP*+cache+DS	0.632	0.697	0.578	0.790	0.878	0.718
OMP	0.709	0.758	0.667	0.815	0.842	0.790

- All approaches shown here work online (no training is required)
- OMP: MP*+cache+DS integrated with SR performs the best

Wan-Lei Zhao

< ロ > < 同 > < 回 > < 回 >

Compared to SOTA

Table: Comparison with the state-of-the-art approaches on testing data. The neural network-based approaches are marked with '‡', OL: Online, Prec.: Precision

		KPI			Yahoo			
Approach	OL	F ₁ -score	Prec.	Recall	F ₁ -score	Prec.	Recall	
SPOT		0.217	0.786	0.126	0.338	0.269	0.454	
DSPOT		0.521	0.623	0.447	0.316	0.241	0.458	
SR		0.622	0.647	0.598	0.563	0.451	0.747	
[‡] SR-CNN		0.771	0.797	0.747	0.652	0.816	0.542	
[‡] DONUT		0.595	0.735	0.500	0.501	0.669	0.401	
[‡] VAE		0.685	0.725	0.648	0.642	0.773	0.549	
[‡] PAD		0.739	0.839	0.660	0.755	0.837	0.688	
[‡] Online-VAE		0.686	0.716	0.657	0.541	0.694	0.443	
[‡] Online-PAD		0.731	0.806	0.669	0.681	0.711	0.653	
ОМР		0.709	0.758	0.667	0.815	0.842	0.790	

• Among all online approaches, OMP achieves the best performance

• Only 1.5 ms is required to process one timestamp

Wan-Lei Zhao

19 / 22

・ロト・「日本」を示す。<

・ロト・「日本」のへの
</p>

Summary

- Advantages
 - 1 No training is required
 - 2 One procedure works for all types of time series
- Disadvantages
 - 1 Detection precision is inferior to deep learning approach
- Publication
 - Shi-Ying Lan, Run-Qing Chen, Jie Zhao, Wan-Lei Zhao*, "Anomaly Detection on IT Operation Series via Online Matrix Profile", under review

< ロ > < 同 > < 三 > < 三 >

Wan-Lei Zhao

Trend Prediction and Anomaly Detection on ITOps Series

21 / 22

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

Thanks for your attention!

Wan-Lei Zhao

Trend Prediction and Anomaly Detection on ITOps Series

22 / 22

イロト 不得 トイヨト イヨト 三日