
IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022 1909

Approximate k-NN Graph Construction: A Generic
Online Approach

Wan-Lei Zhao , Hui Wang , and Chong-Wah Ngo

Abstract—Nearest neighbor search and k-nearest neighbor
graph construction are two fundamental issues that arise from
many disciplines such as multimedia information retrieval, data-
mining, and machine learning. They become more and more
imminent given the big data emerge in various fields in recent years.
In this paper, a simple but effective solution both for approximate
k-nearest neighbor search and approximate k-nearest neighbor
graph construction is presented. These two issues are addressed
jointly in our solution. On one hand, the approximate k-nearest
neighbor graph construction is treated as a search task. Each
sample along with its k-nearest neighbors is joined into the k-
nearest neighbor graph by performing the nearest neighbor search
sequentially on the graph under construction. On the other hand,
the built k-nearest neighbor graph is used to support k-nearest
neighbor search. Since the graph is built online, the dynamic update
on the graph, which is not possible for most of the existing solutions,
is supported. This solution is feasible for various distance measures.
Its effectiveness both as k-nearest neighbor construction and k-
nearest neighbor search approaches is verified across different
types of data in different scales, various dimensions, and under
different metrics.

Index Terms—k-nearest neighbor graph, nearest neighbor
search, high-dimensional, NN-descent.

I. INTRODUCTION

G IVEN a dataset S, the k-NN graph refers to the structure
that keeps top-k nearest neighbors for each sample in the

dataset. It is the key data structure in the manifold learning [1]–
[3], computer vision, machine learning, multimedia information
retrieval [4], and video annotation [5]. Due to the fundamental
role it plays, it has been studied for several decades. Basically,
given a metric, the construction of k-NN graph is to find the
top-k nearest neighbors for each data sample. When it is built in
brute-force way, the time complexity is O(d·n2), where d is the
dimension and n is the size of dataset. Due to the prevalence of

Manuscript received September 17, 2020; revised February 15, 2021; accepted
April 13, 2021. Date of publication April 19, 2021; date of current version April
6, 2022. This work was supported in part by National Natural Science Foun-
dation of China under Grants 61572408 and 61972326, and in part by Xiamen
University under Grant 20720180074. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Prof. Yongdong
Zhang. (Corresponding author: Wan-Lei Zhao).

Wan-Lei Zhao and Hui Wang are with the Department of Computer Sci-
ence and Technology, Xiamen University Xiamen 361005, China (e-mail:
wlzhao@xmu.edu.cn; hwang2019@stu.xmu.edu.cn).

Chong-Wah Ngo is with the School of Computing and Information
Systems, Singapore Management University, Singapore, Singapore (e-mail:
cscwngo@cityu.edu.hk).

Color versions of one or more figures in this article are available at https:
//doi.org/10.1109/TMM.2021.3073811.

Digital Object Identifier 10.1109/TMM.2021.3073811

big data issues in various contexts, both d and n could be very
large.

Despite numerous progress has been made in recent years, the
major issues latent in the approximate k-NN graph construction
still remain challenging. First of all, many existing approaches
perform well only on low-dimensional data. The scale of data
they are assumed to cope with is usually less than one million.
Moreover, most of approaches are designed under specific metric
i.e., l2-norm. Only recent few works [4], [6], [7] aim to address
this issue in the generic metric spaces. Thanks to the introduc-
tion of NN-Descent in [4], the construction time complexity has
been reduced from O(n1.94) [6] to O(n1.14) for data with low
dimensionality (e.g., 5) [4].

Besides the aforementioned major issues, many existing ap-
proaches still face another potential problem. Namely, most of
the approaches are designed to build approximate k-NN graph
for a fixed dataset. In practice, it is not unusual that the dataset
changes from time to time. This is particularly the case for
large-scale multimedia search tasks. For example, the photos
and videos in Flickr grow daily. Given k-NN graph is adopted
to support the content-based search and browse. The new items
should be searchable in the next minute after being uploaded.
Similar scenario is expected for e-shopping. The new products
should be ready for retrieval and browsing by content right after
being put on sale in the website.

In these scenarios, one would expect the k-NN graph that
works behind should be updated dynamically. Unfortunately,
for most of the existing approaches [4], [8]–[10], the dataset is
assumed to be fixed. Any update on the dataset invokes a com-
plete reconstruction on the k-NN graph. As a consequence, the
aggregated costs are very high even the dataset is in small-scale.
It is more convenient if it is allowed to simply insert/remove the
samples into/from the existing k-NN graph. Nevertheless, it is
complicated to update the k-NN graph with the support of con-
ventional indexing structure such as locality-sensitive hashing
(LSH) [11], R-Tree [12] or k-d tree [13].

Another problem that is closely related to approximate k-NN
graph construction is the nearest neighbor search (NN search),
which also arises from a wide range of applications. The nearest
neighbor search problem is defined as follows. Given a query
vector (q ∈ Rd), and n candidates in S that are under the same
dimensionality. It is required to return the sample(s) that are the
closest to the query according to a given metric m(·, ·).

In this paper, a generic approximate k-NN graph construction
approach is presented. The issues of k-NN graph construction
and NN search are addressed under a unified framework. The

1520-9210 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-7915-447X
https://orcid.org/0000-0001-8982-0571
mailto:wlzhao@xmu.edu.cn
mailto:hwang2019@stu.xmu.edu.cn
mailto:cscwngo@cityu.edu.hk
https://doi.org/10.1109/TMM.2021.3073811

1910 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

graph construction problem is treated as a k-NN search task. The
approximate k-NN graph is incrementally built by invoking each
sample to query against the graph under construction. After one
round of k-NN search, the query sample is joined into the graph
along with the discovered top-k nearest neighbors. The k-NN
lists of samples (already in the graph) that are visited during
the search are accordingly updated. The NN search basically
follows the hill-climbing strategy [14]. In order to achieve high
performance in terms of both efficiency and quality, two major
innovations are proposed.
� Restricted recursive neighborhood propagation (RRNP) is

proposed to introduce the newly coming sample to its most
likely neighbors, which enhances the quality of approxi-
mate k-NN graph considerably.

� In order to boost the search performance, a lazy graph diver-
sification (LGD) scheme is proposed. It helps to avoid un-
necessary distance computations during the hill-climbing
while involving no additional computations.

The advantages of this approach are several folds. Firstly, the
online construction avoids repetitive distance computations that
most of the current approximate k-NN graph construction ap-
proaches suffer from. This makes it more efficient than the clas-
sic NN-Descent algorithm [4]. Secondly, the online graph con-
struction is particularly suitable for the scenario that the dataset
is dynamically changing. Moreover, with the support of k-NN
graph, efficient NN search is achievable as demonstrated in [15],
[16]. As a result, two related issues have been jointly addressed
in our solution. Compared to the state-of-the-art NN search ap-
proaches [8], [15], [16], it shows similar or even slightly higher
search efficiency while maintaining an online k-NN graph. The
advantage is that it allows the user to browse over hyperlinks
between closely related contents (i.e., k nearest neighbors). Fur-
thermore, our approach has no specification on the distance mea-
sure, it is therefore a generic solution, which is confirmed in our
experiments.

The remainder of this paper is organized as follows. In Sec-
tion II, a brief review of the research works on the approximate
k-NN graph construction and approximate k-NN search is pre-
sented. Section III presents an NN search algorithm upon which
the approximate k-NN graph construction approach is built. Sec-
tion IV presents an online approximate k-NN graph construction
approach and the enhancement schemes. A more efficient NN
search approach based on the online graph is presented in Sec-
tion V. The experimental studies about the effectiveness of pro-
posed k-NN graph construction and NN search are presented in
Section VI. Section VII concludes the paper.

II. RELATED WORKS

A. k-NN Search

The early study about the k-NN search issue could be traced
back to the 1970 s when the need for NN search on the file sys-
tem arises. In those days, the data to be processed are in very
low dimensions, typically 1D. This problem is well-addressed
by B-Tree [17] and its variant B+-tree [17], based on which
the NN search time complexity could be as low as O(log(n)).
B-tree is not naturally extensible to more than 1D case. More

sophisticated indexing structures were designed to handle NN
search in multi-dimensional data. Representative structures are
k-d-tree [13], R-tree [12] and R*-tree [18]. For k-d tree, pivot
vector is selected each time to split the dataset evenly into two.
By applying this bisecting repeatedly, the hyper-space is parti-
tioned into embedded hierarchical subspaces. The NN search is
performed by traversing over one or several branches to probe
the nearest neighbors. Unlike B-tree in 1D case, the partition
scheme does not exclude the possibility that nearest neighbor
resides outside of these candidate subspaces. Therefore, exten-
sive probing over a large number of branches in the tree becomes
inevitable. For this reason, NN search with k-d tree and the like
could be very slow. Recent indexing structure FLANN [19],
[20] partitions space with hierarchical k-means and multiple k-d
trees. Although efficient, sub-optimal results are observed.

For all the aforementioned tree partitioning methods, another
major disadvantage lies in their heavy demand in memory. On
the one hand, in order to support fast comparison, all the candi-
date vectors are loaded into the memory. On the other hand, the
tree nodes that are used for indexing also take up considerable
amount of extra memory. Overall, the memory consumption is
usually several times bigger than the size of reference set.

In order to reduce the memory complexity, quantization based
approaches [21]–[25] are proposed to compress the reference
vectors [21], [26]. In recent works [27], [28], the performance
of quantization based approaches is boosted due to the better in-
dexing structure and the efficient computation on GPU. For all
the quantization based methods, they share two things in com-
mon. Firstly, the candidate vectors are all compressed via vector
(or sub-vector) quantization. Secondly, NN search is conducted
between the query and the compressed candidate vectors. The
distance between query and candidates is approximated by the
distance between query and vocabulary words that are used for
quantization. Due to the heavy compression on the reference
vectors, high search quality is hardly achievable. Furthermore,
these types of approaches are only suitable for metric spaces of
lp-norm.

Apart from the above approaches, several attempts have been
made to apply LSH [11], [29] on NN search. In general, there are
two steps involved in the search stage. Namely, step 1 collects the
candidates that share the same or similar hash keys as the query.
Step 2 performs an exhaustive comparison between the query
and all these selected candidates to find out the nearest neighbor.
In recent work, hashing by scalar quantization is also proposed
for large-scale image search [30]. Whereas computational cost
remains high if one expects high search quality. Additionally,
the design of hash functions that are feasible for various metrics
is non-trivial.

Recently, the graph-based approaches have been extensively
explored [7], [8], [14], [31]–[33]. Although they are differ-
ent from each other in details, all of them are built upon a
hill-climbing procedure. The search [14] starts from a group
of random seeds (random locations in the vector space). It tra-
verses iteratively over an approximate k-NN graph or a relative
k-NN graph (built-in advance) by the best-first search. Guided
by the NN graph, the search procedure ascends closer to the
true nearest neighbor in each round until no better candidates

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: APPROXIMATE K-NN GRAPH CONSTRUCTION: A GENERIC ONLINE APPROACH 1911

could be found. Approaches in [8], [14], [16], [32], [33] follow
similar search procedure. The major difference between them
lies in the graph used to support the search. According to recent
study [15], these graph-based approaches demonstrate superior
performance over other types of approaches across a variety of
types of data.

B. Approximate k-NN Graph Construction

The approaches for approximate k-NN graph construction
can be roughly grouped into two categories. Approaches such
as [10], [34] basically follow the divide-and-conquer strategy.
On the first step, samples are partitioned into a number of small
subsets. Exhaustive comparisons are carried out within each sub-
set. The closeness relations (viz., edges in the k-NN graph) be-
tween any two samples in one subset are established. In the
second step, these closeness relations are collected to build the
k-NN graph. To enhance the performance, the first step is re-
peated several times with different partitions. The produced
closeness relations are used to update the k-NN graph. Since
it is hard to design a partition scheme that is feasible for vari-
ous generic spaces, they are generally only effective in l2-space.
Another category of approximate k-NN graph construction, typ-
ically NN-Descent [4] avoids such disadvantages. The graph
construction in NN-Descent starts from a random k-NN graph.
Based on the principle “neighbor’s neighbor is likely to be the
neighbor,” the k-NN graph evolves by invoking comparison be-
tween samples in each sample’s neighborhood. Better closeness
relations that are produced in the comparison are used to update
the neighborhood of one sample. This approach turns out to be
generic and efficient. Essentially, it can be viewed as performing
hill-climbing batchfully [4]. Recently, the mixture scheme de-
rived from the above approaches is also seen in the literature [8].

It is worth noting that approaches proposed in [7], [15], [16]
are not approximate k-NN graph construction algorithms. The
graphs are built primarily for k-nearest neighbor search. In these
approaches, the samples which should be in the k-NN list of one
sample are deliberately omitted for comparison efficiency. While
the links to the remote neighbors are maintained [16]. As a con-
sequence, graphs constructed by these approaches are not k-NN
graph in the real sense. Such kind of graphs are hardly support-
ive for tasks beyond k-NN search. Navigable small-world graph
(NSW) [32] is primarily designed to support fast NN search, it
could be viewed as an online graph construction approach. How-
ever, it is not suitable for approximate k-NN graph construction
for its poor search strategy, which leads to low graph quality.

In most of the aforementioned approaches, one potential is-
sue is that the construction procedure has to keep records on the
comparisons that have been made between sample pairs to avoid
repetitive comparisons. However, its space complexity could
be as high as O(n2). Otherwise the repetitive comparisons are
inevitable even by adopting specific sampling schemes [4]. In
this paper, the approximate k-NN graph construction and k-NN
search are addressed jointly. The approximate k-NN graph con-
struction is undertaken by invoking each sample as a query to
query against the approximate k-NN graph that is under con-
struction. Since the query is new to the graph under construction

Fig. 1. An illustration of k-NN graph G and its reverse k-NN graph G. In the
illustration, k is set to 2.

each time, two samples in the dataset are compared at most once.
The repetitive comparisons are avoided.

III. NN SEARCH ON THE K-NN GRAPH

Before we introduce our graph construction approach, the
NN search, on which the construction approach is based, is
presented. Our search procedure is largely similar as the pro-
cedure proposed in HNSW [16]. Whereas unlike HNSW, our
search procedure is undertaken on a flat k-NN graph instead
of a hierarchical relative neighborhood graph. Compared to the
single-layer search in HNSW, a few modifications are further
introduced. In the flat k-NN graph, both the k nearest neighbors
of one sample and its reverse neighbors are kept. In the follow-
ing, the structure of this graph is discussed before we present
the search procedure.

Given k-NN graph G, G[i] returns a k-NN list of sample i.
Accordingly,G is the reverse k-NN graph ofG, which is nothing
more than a re-organization of graphG.G[i] keeps ID of samples
that sample i appears in their k-NN lists. Noticed that the size
of G[i] is not necessarily k and there would be overlappings
between G[i] and G[i]. An illustration of graphs G and G are
seen in Fig. 1. In our implementation, the union of G[i] and
G[i] are kept in a dynamic array (instead of linked list). The
first k elements are the k nearest neighbors (namely G[i]). The
remaining elements are the reverse neighbors of sample i that
are outside the coverage of k nearest neighbors. For presentation
clarity, these samples in the neighborhood are still referred to as
G[i] and G[i]. With the support of k-NN graph G and its reverse
graph G, the NN search algorithm is presented in Alg. 1.

Alg. 1 in general is a hill-climbing procedure [14] with mul-
tiple starting seeds. The query q is firstly compared to p seed
samples. The compared samples are kept in two priority queues
Q and R. Q basically maintains the top-k nearest neighbors of

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

1912 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

the query q. The retrieved neighbors are sorted in ascending or-
der according to their distance to the query.1 As a closer sample
is joined into Q, the rear sample inQwill be swapped out. Unlike
Q, the size of R is not fixed. In each iteration (Line 11 – 27), the
algorithm visits the neighborhood of the closest sample r ∈ R
to the query q. Q and R are updated accordingly with new close
samples to the query. The iteration continues until R is empty or
Q cannot be updated. In the comparison, the distance function
m(·, ·) could be any metric defined on the input dataset. It is
clear to see this is a generic search algorithm. The major differ-
ences between Alg. 1 and the single-layer NN search algorithm
from HNSW [16] are in two aspects. Firstly, it starts from multi-
ple random seeds, which leads to more stable performance over
HNSW. Moreover, the visited samples and the corresponding
distances to the query are kept. These distances will be used to
assist the online k-NN graph diversification later.

1Without the loss of generality, it is assumed that the smaller of the distance
the closer of two samples across the paper.

IV. ONLINE APPROXIMATE K-NN GRAPH CONSTRUCTION

The prerequisites for the NN search algorithm in Alg. 1 are
the k-NN graph G and its reverse k-NN graph G. In this section,
we are going to show how an approximate k-NN graph and
its reverse graph are built based on NN search algorithm itself.
Additionally, a strategy called restricted recursive neighborhood
propagation is proposed to enhance the quality of approximate
k-NN graph. Moreover, an online graph diversification scheme is
proposed. Compared to the approaches in [7], [15], it involves no
additional distance computations while leading to more efficient
NN search than Alg. 1.

A. Approximate k-NN Graph Construction by Search

In Alg. 1, the search starts from several random locations
of the reference set and moves along several trails. The search
moves towards the closer neighborhood of a query in each itera-
tion. In the ideal case, top-k nearest neighbors will be discovered.
On the one hand, the top-k nearest neighbors of this query are
known after the search. On the other hand, some samples in
the reference set are introduced with a new neighbor (namely
the query). As a result, the k-NN graph could be augmented to
include this query sample.

Motivated by this observation, the online k-NN graph con-
struction algorithm is conceived. First, an initial graph is built
exhaustively from a small subset of S. The size of S is fixed
to 64 in this paper. After that, each of the remaining samples is
treated as a query to query against the k-NN graph following the
flow of Alg. 1. The k-NN list of a query sample is joined into the
graph after each search. The k-NN lists of samples which have
been visited during the search are accordingly updated. The gen-
eral procedure of the construction algorithm is summarized in
Alg. 2.

In Alg. 2, the procedure of approximate k-NN graph construc-
tion is basically a repetitive calling of the NN search algorithm
and graph update function. Function InsertG(·) is responsible
for inserting an edge into k-NN list of r in graphs G and G. The
major operations inside InsertG(·) involve the update of k-NN
list and the reverse k-NN list of r. A sample in the rear of a k-NN

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: APPROXIMATE K-NN GRAPH CONSTRUCTION: A GENERIC ONLINE APPROACH 1913

Fig. 2. The illustration of restricted recursive neighborhood propagation. The
propagation starts from unvisited samples in r’s neighborhood and expands
deeper to the neighbors of r’s neighbor. In the figure, p1 is r’s neighbor, p2
is p1’s neighbor. Neither of them are encountered during the search.

list is deleted if a closer sample is joined in. Distances of k-NNs
are kept to allow the list to be sorted all the time.

Although the size of input dataset is fixed in Alg. 2, it is
apparently feasible for an open set, for which new samples are
allowed to join in from time to time. As will be revealed in the
experiments (Section VI), Alg. 2 already performs very well.
In the following, two novel schemes are presented to further
boost the performance in the graph construction and NN search
respectively.

B. Restricted Recursive Neighborhood Propagation

In the last steps of Alg. 2, the query sample q is inserted
to the neighborhood of each r as long as q is in their k-NN
range. Noticed that only a few rs that are sufficiently close to q
will be considered. In the neighborhood of r, it is possible that
there are some samples that were not compared to q during the
hill-climbing search (shown as empty circles inside the dashed
polygon of Fig. 2(a)). Based on the principle that “neighbor’s
neighbor is likely to be the neighbor,” these unvisited samples
are likely to be close neighbors of sample q. Therefore, it is rea-
sonable to insert q and these unvisited samples into the neigh-
borhoods of each other. After this insertion, it is possible that q
is introduced to meet with more unvisited neighbors. As a re-
sult, such kind of insertion could be undertaken recursively until
no new unvisited neighbors are encountered. In addition, such
kind of propagation is restricted to the close neighborhood of a
sample. For example, as shown in Fig. 2(b), p1’s neighborhood
is propagated only if m(q, p1) is smaller than the distance from
p1 to its k-th neighbor. This operation is called restricted recur-
sive neighborhood propagation (RRNP). We find this operation
further improves the quality of k-NN graph while only inducing
minor computational overhead.

The procedure of RRNP is illustrated in Fig. 2 and shown
in Alg. 3 (Line 9 – 24). In Alg. 3, W is a working queue for
the samples to be propagated. Function Push(·) inserts a new
element at the end of the queue and function Pop(·) removes
and returns the next element in the queue. Firstly, a sample r
is pushed into W . After that, all neighbors of the sample(s) in
W that meet the conditions will be pushed into the queue, and
the k-NN graph is updated accordingly. This operation will be
repeated until the queue is empty, which means that there is no
sample available for propagation.

Although RRNP is conceptually similar to neighborhood
propagation proposed in [35], they are essentially different in
two aspects. Firstly, there is no priority in terms of propagation in
RRNP. All the unvisited samples in one neighborhood are com-
pared with the query in random order. Furthermore, such kind of
propagation is restricted to the close neighborhood (within the
radius of a sample’s k-NN list). The neighborhood propagation
proposed in [35] is more like a mini version of NN-Descent.

C. Lazy Graph Diversification

In Alg. 1, when expanding sample r, all the samples in the
neighborhood of r will be compared to the query. According to
recent studies [7], [15], [16], when samples in the neighborhood

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

1914 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

Fig. 3. An illustration of occlusion in 2D l2-space happens in the neighbor-
hood of sample r. Samples a, b, c, d and e are in the k-NN list of r. m(r, b)
is greater than m(r, a), while m(a, b) is smaller than m(r, b), we say that b is
occluded by a in r’s neighborhood, while sample c and d are not occluded by
a. Actually all the samples located in the moon shape shadow are occluded by
a. Notice that the region that is occluded by a could be beyond this moon shape
region.

of r are very close to each other, it is no need to compare to
all of them during the expansion. The expansion on these close
samples most likely guides the climbing process to the same
local region. The phenomenon that samples in the k-NN list are
closer to each other than they are to r is called as “occlusion” [7].
An illustration of occlusion is shown in Fig. 3. In the illustration,
samples b and e are occluded by sample a. It is easy to see one
sample can only be occluded by samples which are closer to r
than that of it. According to [7], [15], [16], the hill-climbing will
be more efficient when samples like b and e are not considered
when expanding r.

In order to know whether samples in a k-NN list are occluded
by each other, the pair-wise comparisons between samples in
the k-NN list are required [7], [15], [16]. This is unfeasible for
an online construction procedure (i.e., Alg. 2). First of all, k-NN
lists are dynamically changing, pair-wise distances cannot be
simply computed and kept for use all the way. Secondly, it is too
costly to update the pair-wise occlusion relations as long as a
new sample is joined in. It would induce a complete comparison
between this new sample and the rest. Moreover, unlike HNSW
the occluded samples cannot be simply removed from a k-NN
list since our primary goal is to build an approximate k-NN graph
as precise as possible.

In this paper, a novel scheme called lazy graph diversification
(LGD) is proposed to identify the occlusions between samples
during the online graph construction. Firstly, an occlusion factor
λ is introduced as the attribute attached to each sample in a k-NN
list. λs of all the samples in the list are initialized to 0 when the
k-NN list of a new query is joined into the graph. Factor λ will
be updated when another new sample is joined into this k-NN
list at the later stages.

Let’s consider a new sample q to be inserted into sample r’s
k-NN list. In order to update λs of r’s neighbors, we should
know the distances of all the neighbors to r and the distances
between q and other neighbors in the list. The distances to r
are already known. While the distances between the query and
the rest neighbors are unknown. Instead of performing a costly
comparison between q and the rest neighbors, we make use of
distances that are recorded in variable D. Namely, the distances

between q and all the visited samples during the NN search
(Alg. 1). With the support of D, occlusion factor λ of all the
samples in the k-NN list is updated with following three rules.
� Rule 1: λ is kept unchanged for samples ranked before q;
� Rule 2: λ of sample q is incremented by 1 if a sample

ranked before q is closer to q than q to r;
� Rule 3: λ of a sample ranked after q is incremented by 1 if

its distance to q is smaller than q to r.
The default distance of each sample to q is set to ∞. The λs of

not-being-visited neighbors are not updated according to Rule
1 and Rule 3. This is reasonable because the not-being-visited
neighbors should be sufficiently far away from q, otherwise they
are already being visited according to the principle “a neighbor
of a neighbor is also likely to be a neighbor”. Since we have all
the possible distances (between q and samples in the graph) only
after the hill-climbing converges, the operations of inserting q
into k-NN list of r and updating factor λs in the list are postponed
to the end of NN search. Fig. 4 illustrates a trail that is formed
by the NN search. In the k-nearest neighborhood of r, the LGD
operations are applied.

Our approach is different from [15], the graph diversification
is undertaken in a lazy way in the sense no exhaustive compar-
ison is involved within the k-NN list. This scheme is therefore
called lazy graph diversification (LGD). The three rules used
to calculate the occlusion factor are called as LGD rules. Our
approach is also different from the way proposed in [7], [16], in
which the occluded samples (λ > 0) are simply omitted. This
is infeasible in our case as it deviates from the goal of k-NN
graph construction. Alternatively, the occlusion factor λ works
as an indicator of the degree of occlusion. If one sample’s λ is
above the average level λ, it is viewed as being occluded. Such
kinds of samples will not be visited during the fast NN search,
which will be elaborated in Section V. Function ApplyLGD(·) in
Alg. 3, Line 25 is responsible to fulfill LGD rules as one sample
is inserted.

D. Sample Removal From k-NN Graph

In practice, we should allow samples to be dropped out from
the k-NN graph. A good use case is to maintain a k-NN graph for
product photos for an e-shopping website, where old-fashioned
products should be withdrawn from sale. The removal of samples
dynamically from the k-NN graph is supported in our approach.
If the graph is built by Alg. 2, the removal operation is as easy as
deleting the sample from the k-NN lists of its reverse neighbors
and releasing its own k-NN list. If the graph is built by Alg. 3,
before the sample is deleted, the occlusion factors of the samples
living in the same k-NN list have to be updated. Fortunately, not
all the samples in the list should be considered. According to
LGD Rule 3, only samples ranked after this sample should be
considered. The update operations involve k2/2 times distance
computations on average. Given k is a small constant, the time
cost is much lower than fulfilling a query on the graph.

Dynamic sample removal is not conveniently supported by
other k-NN graph construction approaches [32], [32], [36] or
other graph-based NN search indexing structures [15], [16]. In

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: APPROXIMATE K-NN GRAPH CONSTRUCTION: A GENERIC ONLINE APPROACH 1915

Fig. 4. A trail of hill-climbing procedure in 2D l2-space. The hill-climbing starts from a single seed and converges when it reaches the neighborhood of the
query. Query sample q is to be inserted into the k-NN list of r. The occlusion relations between q and the rest samples in r’s neighborhood have to be updated.
The distances from samples in the list to r are known. The distances from q to visited samples in r’s neighborhood are also known. The distances from q to
not-being-visited are ∞. Based on the LGD rules, the occlusion factor λs of samples in r’s neighborhood could be updated.

Fig. 5. The variations in the number of average comparisons required for
insertion of one sample. The experiments are conducted with OLGraph+ on four
million-level datasets, The intrinsic data dimensions for SIFT, YFCC, GIST and
GloVe are 16.3, 23.4, 38.1 and 39.5 respectively. The Recall@1 is maintained
above 0.95 level.

HNSW [16], the sample removal operation may lead to the col-
lapse of the indexing structure. While this issue is not even con-
sidered in [15].

E. Complexity and Optimality Analysis

For both OLGraph (Alg. 2) and OLGraph+ (Alg. 3), the adja-
cency list structure is required to support the search and dynamic
update. Memory for IDs, occlusion factors, and distances of k
neighbors and reverse neighbors must be allocated. As a result,
the upper bound of memory consumption of index is around
20·k·n bytes,2 where n is the scale of the dataset. Since the
structure is the union of neighbors and reverse neighbors, the
real memory consumption will be much lower than this bound.

Essentially NN-Descent, OLGraph, and OLGraph+ avoid ex-
haustive comparison via the routings supplied by the k-NN
graph. The routing is effective when it guides the query quickly
to its true neighbors. This is largely determined by the intrinsic
data dimension [4], which varies from one dataset to another.

In order to investigate the time complexity of OLGraph+,3 an
empirical study is conducted on four real-world datasets with
varying data dimensions and scales. On each dataset, we inves-
tigate the average number of comparisons required to construct
k-NN graphs in different data scales. As shown in Fig. 5, the

2This is estimated with 64bits machine.
3OLGraph demonstrates similar trend.

number of average comparisons required for each dataset is at
least one order of magnitude lower than the size of the dataset.
This basically indicates that the time complexity of OLGraph+

is in the range of [n1.5, n1.9] when the data scale is on the mil-
lion level. The time complexity of OLGraph+ is lower on data
with lower intrinsic dimensions, e.g. SIFT and YFCC. For the
dataset GloVe, its time complexity is close to O(n1.66) as its
intrinsic dimension is as high as 39.5 [37]. However, compared
to the exhaustive approach, OLGraph+ is still very efficient in
the sense it saves up 98% comparisons in terms of its scanning
rate, which will be illustrated in the later experiments. Compared
to NN-Descent, OLGraph+ avoids potential repetitive compar-
isons as each sample is new to the samples already in the graph.
In addition, OLGraph+ skips the comparison to the occluded
samples in the neighborhood due to LGD. In general, it is more
efficient.

In both OLGraph (Alg. 2) and OLGraph+ (Alg. 3), the con-
struction starts from a small-scale k-NN graph of 100% qual-
ity. The search process appends a k-NN list of a new sam-
ple to the graph each time. Meanwhile, the k-NN lists of the
already inserted samples will be possibly updated when the
new sample happens to be in their neighborhoods. It is, there-
fore, a win-win situation for both graph construction and NN
search. Effective search procedure returns high-quality k-NN
list. While high-quality k-NN graph gives a good guidance for
the hill-climbing process.

Besides the size of NN list k, there is another parameter in-
volved in OLGraph and OLGraph+. Namely, the number of
seeds p. Usually, the size of NN list k should be no less than the
intrinsic data dimension d∗ [37], which is less than or equal to
the data dimension d. The number of seeds is usually set to be
no bigger than k. When d is very high (i.e., several hundred to
thousand) and d∗ is close to d, the construction process could
be slow when k is set to be close to d. In such a situation, a
trade-off has to be made between the quality of k-NN graph and
the efficiency of the construction.

V. FAST NN-SEARCH ON THE DIVERSIFIED GRAPH

Under LGD rules, the samples in one k-NN list and the cor-
responding reverse k-NN list are considered as being occluded

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

1916 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

when their λ is higher than λ of the k-NN list, where λ is the av-
erage occlusion factor of the list. This basically indicates these
samples in the list are too close to other samples that they are
no need to be considered during the hill-climbing. The factors
of all the samples in one list are updated dynamically as long
as samples are inserted/removed from the list. As the new sam-
ples are joined in the list, members that are previously occluded
may become “visible”. This is the essential difference between
our approach and HNSW [16], in which occluded samples are
removed permanently once it is identified.

Once the occlusion factor is available, the search algorithm
(Alg. 1) is accordingly modified. When the query is compared
to the neighbors in r’s k-NN list, we only consider the samples
whose λ is no greater than the average occlusion factor λ of this
list, where λ is the average occlusion factor of the k-NN list.
The NN search on the diversified k-NN graph is largely similar
as Alg. 1. In the modified NN search, a conditional judgment
statement (like Line 18 in Alg. 1) is added to check whether the
occlusion factor λ of a sample is above λ. Only the “visible”
samples are joined in the comparison. Speed-up is expected as
nearly 50% of samples in one k-NN list are skipped during the
search.

Although NN search on LGD graph is significantly more ef-
ficient than Alg. 1, it is not suitable to be adopted in the k-NN
graph construction in Alg. 3. The close neighbors that are consid-
ered in the comparison in Alg. 1 will be ignored in this modified
NN search. As a consequence, the samples should be joined in
k-NN lists of each other are simply unvisited. For this reason,
NNSearch(·) (Alg. 1) in Alg. 3 is recommended when one wants
to add a sample to the graph. Alternatively, NN search with LGD
check is recommended as one performs pure NN search. In the
experiment section, we will show that the LGD strategy leads to
considerable speed-up in the NN search. It becomes competitive
in comparison to the state-of-the-art approaches.

To this end, one could imagine that there are two modes in our
online k-NN graph framework, namely the construction mode
and pure NN search mode. Under the pure NN search mode,
ApplyLGD(·) is not called since no k-NN list update is invoked
during the procedure. Under the construction mode, Alg. 3 is
invoked.

The fast online k-NN graph construction and NN search have
been integrated into one framework. Compared to the existing
k-NN graph construction approaches [4], [32], [36], fast dy-
namic insertion, removal as well as NN search on a k-NN graph
are all well supported. Compared to other graph-based NN in-
dexing structures such as HNSW [16] and DPG [15], there is no
offline construction stage. As a result, the cost of dynamically
maintaining the indexing structure is much lower than either
HNSW [16] or DPG [15]. Furthermore, compared to HNSW and
DPG, a diversified k-NN graph and a k-NN graph are maintained
simultaneously4 in one structure. On the one hand, it guarantees
fast NN search. On the other hand, it allows the user to browse
over similar contents via the links between k-nearest neighbors.

4The diversified k-NN graph is actually a subset of k-NN graph.

TABLE I
SUMMARY ON DATASETS USED FOR EVALUATION

VI. EXPERIMENTS

In this section, the performance of the proposed algorithms
is studied both as an approximate k-NN graph construction and
a nearest neighbor search approach. In the evaluation, the per-
formance is reported on popular evaluation datasets. The brief
information about the datasets is summarized in Table I. In par-
ticular, the deep features for YFCC1M are extracted from the
2nd last layer of ResNet-50. The features are further reduced to
128 dimension via PCA.

On the approximate k-NN graph construction task, exist-
ing approaches NN-Descent [4] and NSW [32] are consid-
ered in the performance comparison, both of which are feasi-
ble for various distance metrics. On the nearest neighbor search
task, the performance of the proposed search approach is stud-
ied in comparison to the representative approaches of different
categories. Namely, they are graph-based approaches such as
NN-Descent [4], DPG [15] and HNSW [16]. The representa-
tive locality-sensitive hash approach SRS [38] is considered.
For quantization based approach, product quantizer (PQ) [22]
and double-bit quantization (DBQ) [30] are incorporated in the
comparison. FLANN [19] and Annoy [39] are selected as the
representative tree partitioning approaches. Both of them are
popular NN search libraries in the literature.

A. Evaluation Protocol

Eight real-world datasets are adopted to evaluate the perfor-
mance of both k-NN graph construction and nearest neighbor
search. These datasets are derived from real-world images, text
data, or itemset. The top-1 (recall@1) and top-10 (recall@10)
recalls on each dataset are studied under different metrics such
as l2, Cosine, Jaccard and κ2. Given function R(i, k) returns the
number of truth-positive neighbors at top-k NN list of sample i,
the recall at top-k on the whole set is given as

recall@k =

∑n
i=1 R(i, k)

n×k
. (1)

Besides k-NN graph quality, the construction cost is also stud-
ied by measuring the scanning rate [4] and time cost of each
approach. Given C is the total number of distance computations
in the construction, the scanning rate is defined as

c =
C

n×(n− 1)/2
. (2)

For each dataset, another 1000 or 10 000 queries of the same
data type are prepared. The NN search quality is measured by
the top-1 recall for the first nearest neighbor. The search quality

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: APPROXIMATE K-NN GRAPH CONSTRUCTION: A GENERIC ONLINE APPROACH 1917

Fig. 6. The NN search performance on SIFT and GIST based on the graphs
built by NN-Descent, OLGraph, OLGraph+RRNP and OLGraph+ respectively.
k is fixed to 40 for all the graphs.

is reported along with the number of queries per second. All
the codes of different approaches considered in this study are
compiled by g++ 5.4. In order to make our study to be fair, we
disable all the multi-threads, SIMD, and pre-fetching instruc-
tions in the codes since not all the original codes are optimized
with these techniques. All the experiments are executed on a PC
with 3.6GHz CPU and 32G memory setup.

B. Ablation Study

In this section, the effectiveness of the proposed online graph
diversification scheme (LGD) and graph quality enhancement
scheme (RRNP) is studied. As graph construction and NN search
are closely related in our approach, we study the NN search per-
formance improvement when each scheme is added to OLGraph.
Namely, the NN search performance is studied when the search
is conducted on the graphs built by OLGraph (Alg. 2), OL-
Graph+RRNP, OLGraph+ (Alg. 3) respectively. In OLGraph+,
both LGD and RRNP are integrated. NN search based on k-NN
graph from NN-Descent is treated as the comparison baseline.
The results are shown in Fig. 6.

As seen from Fig. 6, due to the incorporation of the reverse
k-NN list, OLGraph outperforms NN-Descent considerably on
both datasets. The performance of OLGraph is further boosted
as the neighborhood propagation scheme RRNP enhances the
graph quality. The best performance is achieved when the graph
diversification scheme LGD is integrated. According to our ob-
servation, LGD does not enhance the graph quality. Instead,
it helps to skip unnecessary comparisons, which leads to the
higher efficiency for search, and in turn for graph construction.
As both LGD and RRNP are effective, they are integrated into
OLGraph+ in the following experiment.

C. Approximate k-NN Graph Construction

The performance of approximate k-NN graph construction is
studied when the k-NN search algorithm is employed as a graph
construction approach. Eight real-world datasets are adopted in
the evaluation. Among them, NUSW is tested under both l2 and
κ2 distance measures, and Kosarak uses Jaccard distance mea-
sure. The performance of OLGraph (Alg. 2) and OLGraph+

Fig. 7. Top-1 and Top-10 recall of k-NN graphs produced by NSW, NN-
Descent, OLGraph and OLGraph+ on eight datasets.

(Alg. 3) is compared to NN-Descent [4] and NSW [32]. NN-
Descent is recognized as the most effective approximate k-NN
graph construction approach that works in the generic metric
spaces, and NSW is an online approach to construct a naviga-
ble small-world graph for k-nearest neighbor search. The k-NN
graph can be derived from the NSW graph by only keeping
the first k nearest neighbors. In the test, the parameter k in
NN-Descent is fixed to 40 for all the datasets, and the parameters
of OLGraph and OLGraph+ are tuned to reach similar recalls as
NN-Descent. Since it is difficult for NSW to reach similar k-NN
graph quality as the other three approaches, its performance is
reported on the level that its time cost is similar to other ap-
proaches. The scanning rates and time consumption of all four
approaches are reported in Table. II. While the top-1 and top-10
recalls of all the approaches are shown in Fig. 7.

As seen from the table, in most of the cases, the scanning
rates from OLGraph and OLGraph+ are much lower than that
of NN-Descent when their graph quality is maintained on the
similar level. This basically indicates much less distance compu-
tations are involved with OLGraph and OLGraph+. Compared
to NN-Descent, OLGraph and OLGraph+ avoid repetitive dis-
tance computations between any sample pairs. Since the distance
computation is the most computationally intensive operation in
all approaches, OLGraph and OLGraph+ are expected to be
much faster. However, the CPU cache structure is more friendly
to NN-Descent since its distance computations are taken place
in a local at each moment. For this reason, the computation costs
from OLGraph are not considerably lower than NN-Descent as
is shown in Table. II. In contrast, OLGraph+ shows considerably
lower time costs than NN-Descent due to its very low scanning
rate. In particular, it has a greater advantage on high-dimensional
datasets like GIST1M and NUSW.

As shown in Fig. 7, k-NN graphs produced by NSW show
considerably poorer quality than the other approaches when they
take similar time costs. Although NSW and OLGraph are con-
ceptually similar to each other, they are essentially different from
each other. In both OLGraph and OLGraph+, the new query is
attempted to insert into the neighborhoods of all the visited sam-
ples. In NSW, only the neighborhoods of returned top-k samples
to the query are updated when a new query is joined in. As a
result, a sample outside of the top-k ranking has no chance to

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

1918 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

TABLE II
SCANNING RATES AND TIME CONSUMPTION OF NN-DESCENT, NSW, OLGRAPH AND OLGRAPH+ ON EIGHT DATASETS

Fig. 8. The NN search performance on eight datasets. Five graph-based approaches are considered in this study. OLGraph and OLGraph+ are the approaches
proposed in this paper. Because the source codes of HNSW and DPG do not support sparse matrices, they do not participate in the comparison on Kosarak dataset.

add the new query into its neighborhood. For this reason, the
graph quality is low. This in turn degrades its performance as an
NN search indexing structure.

D. Nearest Neighbor Search

In our second experiment, the NN search performance is
compared to three representative graph-based approaches NN-
Descent [4], DPG [15], and HNSW [16], which work in generic
metric spaces. All the approaches are based on the similar
hill-climbing search procedure but different in details. They are
different from each other mainly in the graphs upon which the
search procedure is undertaken. For convenience, the NN search
approaches based on the graph constructed by OLGraph and
OLGraph+ are given as OLGraph and OLGraph+ respectively.
The NN search on graph from OLGraph is based on Alg. 1,
while NN search on OLGraph+ graph is the approach presented
in Section V, in which the LGD check is adopted. In the ex-
periment, parameter k in NN-Descent is fixed to 40 for all the
datasets to be in line with the experiments in [15]. DPG graph is
built upon approximate k-NN graph produced by NN-Descent

and undergone an offline diversification [15]. OLGraph searches
over graph which is a merge of k-NN graph and its reverse k-NN
graph that are produced by Alg. 2. NN search in OLGraph+

is on a k-NN graph merged with its reverse k-NN graph that
has been diversified online by LGD rules (Alg. 3). The param-
eter k in OLGraph and OLGraph+ is also fixed to 40 for all
the datasets. While for HNSW, the search is undertaken on a
hierarchical small-world graph. The graph maintains the links
between the close neighbors as well as the long-range links to
the remote neighbors that are kept in a hierarchy. The parameter
M in HNSW is fixed to 20. The edges kept for each sample in
the bottom layer is 40. Its size of NN list is therefore on the same
level as NN-Descent, OLGraph and OLGraph+.

The search performance on eight datasets is shown in Fig. 8.
Among all the graph-based approaches, the relative better
performance is observed from DPG, HNSW, OLGraph, and
OLGraph+ over NN-Descent. The performance boost mainly
owes to the use of reverse k-NN list and the introduction of
graph diversification. The trend of OLGraph performance curve

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: APPROXIMATE K-NN GRAPH CONSTRUCTION: A GENERIC ONLINE APPROACH 1919

Fig. 9. The NN search performance on three datasets ranging from “easy”
to “hard” (best viewed in color). The performance from seven representative
approaches are plotted in the figure. Figures (a) and (b) report the speed-up
that one approach could achieve when the top-1 recall is on 0.8 and 0.9 levels
respectively.

is similar to that of OLGraph+, whereas OLGraph+ outper-
forms OLGraph on most of the datasets. The performance su-
periority of OLGraph+ largely owes to the LGD strategy. Com-
pared to HNSW, OLGraph+ shows increasingly better perfor-
mance as the recall is set to a high level. It is mainly because
OLGraph+ performs graph diversification on a high-quality ap-
proximate k-NN graph. In contrast, limited by the search frame-
work, HNSW performs the diversification on a dynamically
diversified graph. DPG shows a very similar performance as
OLGraph+ on most of the datasets. Both of the search ap-
proaches are based on the diversified k-NN graph. The proposed
lazy graph diversification is more suitable for the online k-NN
graph as the diversification is performed efficiently whenever
a new sample joins in. In contrast, cross-matching required by
DPG is too costly to be undertaken online.

Compared the result presented in Fig. 8(a) to the one pre-
sented in Fig. 8(b), the high scalability is observed on SIFT
data by the proposed approach. As seen in the figure, the size
of the reference set has been increased by one magnitude, while
the time cost only increases from 0.21ms (per query) to 0.32ms
(per query), when the search quality is maintained on 0.9 level.
Similar high scalability is also observed on deep features i.e.,
YFCC1M (Fig. 8(d)). This is good news given the deep features
have been widely adopted in various applications nowadays. In
contrast, such kind of high speed-up is not achievable on NUSW,
GloVe1M, and GIST1M. It is clear to see that the efficiency of
graph-based approaches is partly related to the intrinsic data
dimension [4], [7]. When the intrinsic data dimension is low,
with the guidance of a k-NN graph or a relative k-NN graph,
the hill-climbing search is actually undertaken on the subspaces
where most of the data samples are embedded. Due to the low di-
mensionality of these subspaces, the search complexity is lower
than it seemingly is. This is one of the major reasons that the
graph-based approaches exhibit superior performance over other
types of approaches.

E. Comparison to State-of-The-Art k-NN Search

Fig. 9 further compares our approach with the most represen-
tative approaches of different categories in the literature. Besides

aforementioned HNSW and NN-Descent, approaches consid-
ered in the comparison include tree partitioning approaches An-
noy [39] and FLANN [19], locality-sensitive hashing approach
SRS [38], vector quantization approaches double-bit quantiza-
tion (DBQ) [30], and product quantizer (PQ) [22]. In the figures,
the speed-up relative to the exhaustive search that each approach
achieves is reported when recall@1 is set to 0.8 and 0.9 levels.
For PQ, it is impossible to achieve top-1 recall above 0.5 due to its
heavy quantization loss. As an exception, its recall is measured
at top-16 for SIFT1M and NUSW, and measured at top-128 for
GIST1M. For DBQ, the vectors are projected by PCA first and
binarized into 256 bits for both datasets SIFT1M and GIST1M.

As shown in the figure, the best results come from graph-
based approaches. This observation is consistent across differ-
ent datasets. The speed-up of all the approaches drops as the re-
call@1 rises from 0.8 to 0.9. The speed-up degradation is more
significant for approaches such as PQ and FLANN. No consid-
erable speed-up is observed for SRS on any of the datasets. This
basically indicates SRS is not suitable for the tasks which re-
quire high NN search quality. For DBQ, the highest Recall@1
are 0.282 and 0.143 with 30.1 and 224.3 times speed-up on
SIFT1M and GIST1M respectively. The representation lacks of
discriminativeness due to the small distance space spanned by
the binary code. Due to its low recall, the results from DBQ
are not plotted in Fig. 9. An interesting observation is that the
performance gap between graph-based approaches and the rest
is wider on the “easy” dataset than that of “hard”. Compared
to the approaches of other categories, the NN search based on
the graph takes advantage of the latent subspace structures in a
dataset. Since the intrinsic dimension of “easy” dataset is low [7],
the hill-climbing is actually undertaken on the low-dimensional
subspace. The higher is the ratio between data dimension and in-
trinsic dimension, the higher is the speed-up of that graph-based
approaches achieve. In contrast, there is such strategy in other
types of approaches capitalizes on these latent structures in the
data.

On the one hand, the high search speed-up is observed from
OLGraph+ on data types such SIFT, GIST, and deep features.
With such efficiency, it is possible to realize a search system with
the instant response on 100 million level dataset by a single PC.
On the other hand, it is still too early to say the problem of
NN search on high-dimensional data has been solved. As shown
on NUSW dataset, where both the data dimension and intrinsic
data dimension are high, the efficiency achieved from all the
approaches is still limited. As pointed out in another work from
us [48], the difficulty faced in this case is directly linked to the
“curse of dimensionality,” which will remain as an open issue.

VII. CONCLUSION

We have presented our solution for both approximate k-NN
graph construction and nearest neighbor search. These two is-
sues have been addressed under a unified framework. Namely,
the NN search and NN graph construction are designed as an
interdependent procedure that one is built upon another. The ad-
vantages of this design are several folds. First of all, the approxi-
mate k-NN graph construction is treated as an online procedure.

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

1920 IEEE TRANSACTIONS ON MULTIMEDIA, VOL. 24, 2022

It allows the samples to be inserted in or dropped out from the
graph dynamically, which is not possible from most of the exist-
ing solutions. Moreover, no sophisticated indexing structure is
required to support this online approach. Furthermore, the solu-
tion has no specification on the distance measure, which makes
it a generic approach both for k-NN graph construction and NN
search. Superior performance is observed on both k-NN graph
construction and nearest neighbor search tasks under various test
configurations.

REFERENCES

[1] J. B. Tenenbaum, V. de Silva, and J. C. Langford, “A global geomet-
ric framework for nonlinear dimensionality reduction,” Science, vol. 290,
no. 5500, pp. 2319–2323, Dec. 2000.

[2] S. T. Roweis and L. K. Saul, “Report nonlinear dimensionality reduction
by locally linear embedding,” Science, vol. 290, no. 5500, pp. 2323–2326,
Dec. 2000.

[3] C. Luo, B. Ni, S. Yan, and M. Wang, “Image classification by selective
regularized subspace learning,” IEEE Trans. Multimedia, vol. 18, no. 1,
pp. 40–50, 2016.

[4] W. Dong, C. Moses, and K. Li, “Efficient k-nearest neighbor graph con-
struction for generic similarity measures,” in Proc. 20th Int. Conf. World
Wide Web, WWW’11, 2011, pp. 577–586.

[5] M. Wang, X.-S. Hua, J. Tang, and R. Hong, “Beyond distance measure-
ment: Constructing neighborhood similarity for video annotation,” IEEE
Trans. Multimedia, vol. 11, no. 3, pp. 465–476, 2009.

[6] R. Paredes, E. Chávez, K. Figueroa, and G. Navarro, “Practical construc-
tion of k-nearest neighbor graphs in metric spaces,” in Proc. 5th Int. Conf.
Exp. Algorithms, WEA’06, 2006, pp. 85–97.

[7] B. Harwood and T. Drummond, “FANNG: Fast approximate nearest neigh-
bour graphs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 5713–5722.

[8] C. Fu and D. Cai, “EFANNA : An extremely fast approximate nearest
neighbor search algorithm based on knn graph,” 2016, arXiv:1609.07228.

[9] J. Chen, H. ren Fang, and Yousef, “Fast approximate KNN graph construc-
tion for high dimensional data via recursive lanczos bisection,” J. Mach.
Learn. Res., vol. 10, pp. 1989-2012, Dec. 2009.

[10] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable k-NN
graph construction for visual descriptors,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 1106–1113.

[11] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. 20 Annu. Symp.
Comput. Geometry, 2004, pp. 253–262.

[12] A. Guttman, “R-Trees: A Dynamic Index Structure for Spatial Searching,”
in Proc. 1984 ACM SIGMOD Int. Conf. Manag. Data, vol. 14, (New York,
NY, USA), pp. 47–57, ACM, Jun. 1984.

[13] J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[14] K. Hajebi, Y. Abbasi-Yadkor, H. Shahbazi, and H. Zhang, “Fast approxi-
mate nearest-neighbor search with k-nearest neighbor graph,” in Proc. Int.
Joint Conf. Artif. Intell., 2011, pp. 1312–1317.

[15] W. Li et al., “Approximate nearest neighbor search on high dimensional
data-experiments, analysis and improvement,” IEEE Trans. Knowl. Data
Eng., vol. 32, no. 8, pp. 1475–1488, Apr. 2019.

[16] Y. A. Malkov and D. Yashunin, “Efficient and robust approximate nearest
neighbor search using hierarchical navigable small world graphs,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 4, pp. 824–836, 2020.

[17] D. Comer, “Ubiquitous b-tree,” ACM Comput. Surveys, vol. 11, no. 2,
pp. 121–137, Jun. 1979.

[18] N. Beckmann, H.-P. Kriegel, R. Schneider, and B. Seeger, “The R*-tree:
an efficient and robust access method for points and rectangles,” in Int.
Conf. Manage. Data, pp. 322–331, 1990.

[19] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” Trans. Trans. Pattern Anal. Mach. Intell., vol. 36, no. 11,
pp. 2227–2240, 2014.

[20] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image descrip-
tor matching,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2008,
pp. 1–8.

[21] Y. Chen, T. Guan, and C. Wang, “Approximate nearest neighbor search by
residual vector quantization,” Sensors, vol. 10, no. 12, pp. 11259–11273,
2010.

[22] H. Jégou, M. Douze, and C. Schmid, “Product quantization for near-
est neighbor search,” Trans. Trans. Pattern Anal. Mach. Intell., vol. 33,
pp. 117–128, Jan. 2011.

[23] A. Babenko and V. Lempitsky, “Efficient indexing of billion-scale datasets
of deep descriptors,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 2055–2063.

[24] T. Zhang, C. Du, and J. Wang, “Composite quantization for approxi-
mate nearest neighbor search,” in Proc. Int. Conf. Mach. Learn., 2014,
pp. 838–846.

[25] J. Martinez, H. H. Hoos, and J. J. Little, “Stacked quantizers for compo-
sitional vector compression,” 20142014, arXiv:1411.2173.

[26] R. M. Gray and D. L. Neuhoff, “Quantization,” IEEE Trans. Inf. Theory,
vol. 44, pp. 2325–2383, Sep. 2006.

[27] P. Wieschollek, O. Wang, A. Sorkine-Hornung, and H. Lensch, “Efficient
large-scale approximate nearest neighbor search on the GPU,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2027–2035.

[28] J. Johnson, M. Douze, and H. Jégou, “Billion-scale similarity search with
GPUs,” IEEE Trans. Big Data, 2019.

[29] Q. Lv, W. Josephson, Z. Wang, and M. C. amd K. Li, “Multi-probe LSH:
Efficient indexing for high-dimensional similarity search,” in Proc. Very
Large Data bases, Sep. 2007, pp. 950–961.

[30] H. Xie, Z. Mao, Y. Zhang, H. Deng, C. Yan, and Z. Chen, “Double-bit
quantization and index hashing for nearest neighbor search,” IEEE Trans.
Multimedia, vol. 21, no. 5, pp. 1248–1260, 2019.

[31] J. Wang and S. Li, “Query-driven iterated neighborhood graph search for
large scale indexing,” in Proc. 20th ACM Int. Conf. Multimedia, 2012,
pp. 179–188.

[32] Y. A. Malkov, A. Ponomarenko, A. Lovinov, and V. Krylov, “Approximate
nearest neighbor algorithm based on navigable small world graphs,” Inf.
Syst., Elsevier, vol. 45, pp. 61–68, 2014.

[33] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest neighbor
search with the navigating spreading-out graph,” in Proc. VLDB Endow-
ment, vol. 12, Jan. 2019, pp. 461–474.

[34] Y.-M. Zhang, K. Huang, G. Geng, and C.-L. Liu, “Fast knn graph con-
struction with locality sensitive hashing,” in Proc. Mach. Learn. Knowl.
Discov. Databases: Eur. Conf., Sep., 2013. pp. 660–674.

[35] J. Wang, J. Wang, G. Zeng, Z. Tu, R. Gan, and S. Li, “Scalable K-NN
graph construction for visual descriptors,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2012, pp. 1106–1113.

[36] T. Debatty, P. Michiardi, and W. Mees, “Fast Online K-NN Graph Build-
ing,” CoRR, 2016, arXiv:1602.06819.

[37] E. Levina and P. J. Bickel, “Maximum likelihood estimation of
intrinsic dimension,” Adv. Neural Inf. Process. Syst., pp. 777–784,
2005.

[38] Y. Sun, W. Wang, J. Qin, Y. Zhang, and X. Lin, “SRS: Solving c-
approximate nearest neighbor queries in high dimensional euclidean space
with a tiny,” in Proc. VLDB Endowment, Sep. 2014. pp. 1–12.

[39] E. Bernhardsson, “Annoy: Approximate nearest neighbors in C++/python
optimized for memory usage and loading/saving to disk,” GitHub
https://github.com/spotify/annoy, 2017.

[40] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
Int. J. Comput. Vis., vol. 60, no. 2, pp. 91–110, 2004.

[41] M. Douze, H. Jégou, H. Singh, L. Amsaleg, and C. Schmid, “Evaluation
of GIST descriptors for web-scale image search,” in Int. Conf. Image and
Video Retrieval, pp. 19: 1–19:8, Jul. 2009.

[42] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Empirical Methods Natural Lang. Process.,
pp. 1532–1543, 2014.

[43] T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y.-T. Zheng, “Nus-
wide: A real-world web image database from national university of sin-
gapore,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jul. 2009,
pp. 1–9.

[44] J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in Proc. Int. Conf. Comput. Vis. Workshop,
2003, pp. 1470–1477.

[45] G. Amato, F. Falchi, C. Gennaro, and F. Rabitti, “YFCC100 M hybrid-
net fc6 deep features for content-based image retrieval,” in Proc. ACM
Workshop Multimedia COMMONS, 2016, pp. 11–18.

[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[47] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks: A
benchmarking tool for approximate nearest neighbor algorithms,” in Int.
Conf. Similarity Search Appl., 2017, pp. 34–49.

[48] P.-C. Lin and W.-L. Zhao, “A Comparative Study on Hierarchical Navi-
gable Small World Graphs,” CoRR, vol. abs/1904.02077, 2019.

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

ZHAO et al.: APPROXIMATE K-NN GRAPH CONSTRUCTION: A GENERIC ONLINE APPROACH 1921

Wan-Lei Zhao received the B.Eng. and M.Eng. de-
grees from the Department of Computer Science
and Engineering from Yunnan University, Kunming,
China, in 2006 and 2002, respectively, and the Ph.D.
degree from the City University of Hong Kong, Hong
Kong, in 2010. He is currently with Xiamen Univer-
sity, Xiamen, China, as an Associate Professor. Be-
fore joining Xiamen University, he was a Postdoc-
toral Scholar with INRIA, Le Chesnay, France. His
research interests include multimedia information re-
trieval and video processing.

Hui Wang received the bachelor’s degree in engineer-
ing from Zhejiang Sci-Tech University, Hangzhou,
China, in 2019. He is currently working toward the
master’s degree with the School of Informatics, Xia-
men University, Xiamen, China. His research focuses
on large-scale nearest neighbor search.

Chong-Wah Ngo received the B.Sc. and M.Sc. de-
grees in computer engineering from the Nanyang
Technological University of Singapore, Singapore,
and the Ph.D. degree in computer science from the
Hong Kong University of Science and Technology,
Hong Kong. He is currently a Professor with the
School of Computing and Information Systems, Sin-
gapore Management University, Singapore. Before
joining Singapore Management University, he was
with the Department of Computer Science, City Uni-
versity of Hong Kong, Hong Kong. He was a Post-

doctoral Scholar with the Beckman Institute, University of Illinois, Urbana-
Champaign, Champaign, IL, USA. His main research interests include large-
scale multimedia information retrieval, video computing, multimedia mining,
and visualization. He was an Associate Editor for the IEEE TRANSANCTION ON

MULTIMEDIA and is currently a Steering Committee Member of the TRECVid,
International Conference on Multimedia Retrieval and ACM Multimedia Asia.
He is the Program Co-Chair of the ACM Multimedia 2019, and the General
Co-Chair of ICIMCS 2018 and PCM 2018. In 2016, he was named ACM Distin-
guished Scientist for contributions to video search and semantic understanding.

Authorized licensed use limited to: Xiamen University. Downloaded on August 12,2022 at 04:30:24 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

