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Abstract—With the proliferation of Web 2.0 applications, user-
supplied social tags are commonly available in social mediaas
a means to bridge the semantic gap. On the other hand, the
explosive expansion of social web makes overwhelming number
of web videos available, among which there exists a large
number of near-duplicate videos. In this paper, we investigate
techniques which allow effective annotation of web videos from
a data-driven perspective. A novel classifier-free video annotation
framework is proposed by first retrieving visual duplicates and
then suggesting representative tags. The significance of this paper
lies in the addressing of two timely issues for annotating query
videos. First, we provide a novel solution for fast near-duplicate
video retrieval. Second, based on the outcome of near-duplicate
search, we explore the potential that the data-driven annotation
could be successful when huge volume of tagged web videos is
freely accessible online. Experiments on cross sources (annotating
Google videos and Yahoo! videos using YouTube videos) and cross
time periods (annotating YouTube videos using historical data)
show the effectiveness and efficiency of the proposed classifier-
free approach for web video tag annotation.

I. I NTRODUCTION

Despite the advance in content analysis of videos, over-
coming the semantic gap between human perception and low-
level visual features remains a challenging problem. Existing
approaches in video annotation depend heavily on the machine
learning techniques (e.g., Support Vector Machines) to mapthe
low-level features to high-level semantic concepts. Theseso-
called model-based approaches normally involve the learning
of a large set of concept classifiers for labeling the incoming
data. In general, these approaches are not competent for
managing the ever-increasing number of web videos due to
the following two main reasons:

• A large amount of balanced labeled samples is often
required for effective classifier learning. Nevertheless,the
scarcity of training examples commonly exists in many
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applications. Collecting a large set of noise-free training
examples with sufficient positive samples for learning is
always not easy. Manual annotation of training examples
can be laborious, and most labeling efforts are indeed
spent in annotating negative examples. Considering these
difficulties, building a large set of classifiers scalable for
annotating most of the concepts in web videos is beyond
the current state-of-the-art technologies.

• The size of vocabulary is huge and the meaning of
concepts may change dynamically. In social media, for
example, a word may evolve over time and can change
according to context. Novel words or phrases may emerge
when new topics are being discussed. Learning classifiers
in such scenario is difficult to cope with and completely
model the evolving nature of web environment.

The emergence of Web 2.0 technology makes video a
popular social media shared among web users. Some of these
videos come alongside with tags which provide semantics
and context about the video content. An intuitive idea for
annotation is by utilizing existing tags to label new videos.
Basically, given an un-tagged video, similar videos are first
retrieved from database. The associated tags of similar videos
are examined and then appropriate tags are picked for an-
notating the new video. From the data perspective point of
view, such data-driven approaches are possible when there
are enough videos and tags available to characterize any new
incoming data. This paves a new way of annotation through
a model-free data-driven methodology. Such techniques have
recently been evident in [15], [19], [24], [26], which are
also referred to as “annotation by search”. In [24], a large
dataset of 80 million tiny images is collected for object and
scene recognition by nearest neighbor search. In [15], [26],
content-based retrieval techniques based on global features
are exploited for image annotation. In [19], tag propagation
technique is developed by crawling tags of similar videos for
annotation by using text and global visual features. Similar
in spirit, this paper also explores search-based annotation
by the nearest neighbor search of examples in large visual
corpus. Different from previous works, our work is based
on effective and efficient near-duplicate video retrieval by
using local keypoints, targeting for annotating web videos.
Compared to similarity-based labeling on images and videos
as in [15], [19], [24], [26], near-duplicates searched by local
keypoints provide more reliable and accurate information for
video annotation. Keypoint based video search, different from
global features, requires the considerations of point matching,
geometric checking and segment localization, which have not
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yet been explored by other search-based annotation techniques.
In this paper, we investigate two main issues for data-driven

video annotation: (1) how to efficiently search for similar
videos by local features, and (2) how effectively the tags
from similar videos can be recycled for tagging. We consider
the similar videos as the set of duplicate or partial duplicate
videos which commonly exist in most social media websites
such as YouTube. For the first issue, we propose an efficient
near-duplicate video retrieval framework by considering three
aspects: indexing of local visual features, fast pruning of
false matches at frame-level, and localization of near-duplicate
segments at video-level. For the second issue, a weighted
majority voting scheme is adopted for tag recommendation by
studying the tagging behaviors in the pool of retrieved near-
duplicates. Intuitively, if different users label visually similar
videos with the same tags, these tags are likely to reflect
an objective view of the video content. The premise of the
proposed methodology is that there exists at least one near-
duplicate video in the corpus. Our approach cannot provide
tag if no near-duplicate videos can be found in the reference
set.

We conduct experiments on a large-scale video dataset and
consider two tasks:cross-source taggingwhich uses existing
tags in one search engine to tag videos available in other
search engines, andcross-time taggingwhich uses existing
tags collected over years to tag recently uploaded videos.
Both types of tagging have their own applications. We regard
cross-source tagging as an economic way to propagate the
metadata among search engines, so as to improve the retrieval
performance by enriching or exchanging the tags among
different engines. Cross-time tagging, by suggesting tagsto
newly uploaded videos, can enhance the retrieval of similar
videos manipulated by various parties which may carry new or
additional message over time along the manipulation history.

The rest of this paper is organized as follows. Section II
gives a brief overview of related work. Section III introduces
the proposed framework for model-free web video annotation.
Section IV outlines the efficient algorithm for near-duplicate
search, while section V presents data-driven tag annotation.
Section VI describes our experimental setup for cross-source
and cross-time tagging, and section VII further details our
empirical findings. Finally, section VIII concludes this paper.

II. RELATED WORK

A. Tag Annotation

The performance of semantic-based image/video search
depends largely on the quality of the keywords or annotation.
To bridge the semantic gap between low-level visual features
and semantic concepts, image auto-annotation and object
recognition have attracted the interest of researchers in recent
years. Many learning models (e.g., [20]) have been proposedto
automatically assign keywords onto images or image regions.
For automatic image annotation, the works can be categorized
into two directions: to learn the conditional probability,or
to learn the joint probabilities between images and words.
Unfortunately, the performances of these statistical models
are still far from being acceptable for practical applications.

Instead, social tagging is widely adopted in various social
media websites such as del.icio.us, Flickr, and YouTube. The
descriptive metadata generated by grass-root users are often
exploited for effective organization of web resources.

Existing works on tagging services cover a wide range
of research topics, including resolving tag ambiguity [27],
analyzing usage patterns of tagging systems [5], mining social
interests through tags [14], automating tag assignment [2],
[16], [21], [23], [28], and so on. Among them, there have
been numerous efforts on automatic tag suggestion or recom-
mendation [2], [15], [21], [23], [26]. A common strategy is
to suggest tags based on personal history, geographic location
and time [1]. Co-occurrence of tag is a vivid clue that has
been explored by [21], [27]. In [21], tag aggregation algorithm
is proposed to rank recommended tags according to tag co-
occurrence, frequency, and long-tail distribution effect. In [27],
a measure is proposed to determine the ambiguity of a tag
set, and new tags that can disambiguate the original tags are
suggested. In addition to tag recommendation, tag refinement
is also explored to prune or re-rank tags. Ontology such
as WordNet is employed for pruning semantically irrelevant
tags [31]. Tags are refined by re-ranking candidate tags using
random walk [25]. A graph with tags as vertices and tag co-
occurrences as edges is constructed to rank tags according
to their popularity. Recently, a neighbor voting algorithmis
proposed for image retrieval [16], which predicts the relevance
of user-contributed tags. By taking into account the tag and
visual correlation, the recent work in [28] formulates tag
recommendation as a learning problem.

Search-based annotation has also captured numerous re-
search attention recently. In [15], [26], a corpus of 2.4 mil-
lion images are crawled from web for image annotation. A
high-dimension indexing scheme (namely Multi-Index) and a
search result clustering technique (namely SRC) are proposed
in [15] for annotation through large-scale search. A more
sophisticated divide-and-conquer framework which considers
text and visual search is later developed in [26] for data-driven
tagging. In [19], variants of graph reinforcement algorithm
are proposed for propagating tags from similar documents to
query videos. These works [15], [19], [26] consider only global
visual features for search. In [19], [26], initial textual keywords
or labels are further assumed to be available to guarantee
efficient search and effective propagation. While similar in
spirit, our works in this paper are different from [15], [26]
in several aspects. First, we do not assume the availabilityof
textual keywords to initiate the search for annotation. Instead,
the search is purely based on visual information. To ensure
the robustness of visual search, we consider local features
which are very different from global features such as color
moment and edge histogram used in [15], [26]. Second, we
consider scalable search of partial near-duplicate videos, where
spatial geometric and temporal consistency information are
taken into account. The works in [15], [26] which perform
image search by global visual features thus are not directly
extensible to our work. Similarly, the work in [19] aims for
effective propagation of tags from similar videos but scalability
is not considered. Thus, extending the propagation algorithms
to thousands of web videos remains a challenging issue in
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general.

B. Near-Duplicate Video Retrieval

Near-duplicate videos are identical or approximately identi-
cal videos with similar appearance, but varying in terms of for-
matting, encoding parameters, editing, photometric variation,
viewpoints, and change in camera parameter or setting [29],
[33]. Existing works on near-duplicate retrieval can be broadly
grouped into two categories. One category demands speedy
response while the other emphasizes more on detection effec-
tiveness. The first category aims for rapid retrieval (e.g.,[6],
[32]) and thus global features derived from color and ordinal
signature are popularly employed. These approaches are highly
suitable for identifying near identical videos. For videoswith
partial duplicate, either spatially or temporally, globalfeatures
are known to be less reliable.

The second category addresses the robustness issue by
mainly employing local point features [17]. Local points
(keypoints) are salient local patches detected over different
scales. Its effectiveness has been demonstrated by various
works (e.g., [9], [12], [13], [33], [34]), where near-duplicates
with considerable changes in background, color and light-
ing can be successfully identified. While these approaches
are robust in general, the robustness comes with the ex-
pense of computational cost. To tackle this problem, different
approaches have been proposed. Locality sensitive hashing
(LSH) is adopted in [12], while a distortion-based probability
similar search algorithm based on LSH is proposed for fast
duplicate search in [10]. Another popularly adopted technique
is retrieval by visual keywords (VK) [22], also known as bag-
of-words. Under this technique, keypoints are quantized into
groups (dictionary) and each group (an entry of dictionary)
is viewed as a word. As a result, instead of representing
video content with hundreds to thousands of keypoint features
in high dimension (e.g., 128 dimensions for SIFT descriptor
[17]), VK characterizes video content as a histogram of words
which facilitates fast matching.

VK histogram is often a sparse feature vector in high
dimensional space (e.g., 10,000 words). Thus, inverted file
index is employed for fast matching of visual words [22].
A major weakness of VK is visual ambiguity caused by
keypoint quantization. Specifically, large (small) dictionary
leads to miss (false) matching. Several approaches have been
proposed to address this problem, for instance, Hamming em-
bedding (HE) [7], soft-weighting (SW) [8] and weak geometric
consistency (WGC) [7]. HE keeps a bit-pattern signature for
each visual word for pruning false positives due to histogram
matching, while SW assigns multiple words to keypoints to
resolve visual ambiguity. WGC is a weighting scheme which
re-ranks the quality of histogram matches by checking their
geometry consistency. VK normally operates on keyframe-
level. Specifically one keyframe is represented by a histogram.
To match two videos, Hough Transform (HT) [4] is another
technique often employed to measure the degree of match
between videos. HT considers time lags between the matched
keyframes from two videos. The time lags are utilized as the
cue to measure video similarity.

Annotating web videos expects timely response. On the
other hand, quality of web search will impact the result of
annotation. Choosing appropriate technique is thus a trade-off
between retrieval speed and accuracy. In this paper, we adopt
VK+HE together with WGC and HT for scalable retrieval.
Both WGC and HT are revised for enhancing search accuracy,
leading to a much better performance compared to their
original versions.

III. A NNOTATION BY SEARCH

A. Data-driven Annotation

The problem of annotating web videos can be formulated
as finding a group of tags which maximize the conditional
distributionp(t|Vi):

t∗ = argmax
t

p(t|Vi), (1)

where Vi is a web video to be annotated andt∗ is a pool
of candidate tags. According to Bayesian rule, Eqn. 1 can be
expanded to:

t∗ = argmax
t

∑

k

p(t|Vk)p(Vk|Vi). (2)

Intuitively, for a web video to be annotated,t∗ appears more
frequently in the contexts of similar videos than dissimilar
ones. Hence, we can approximate Eqn. 2 by generatingt∗ from
similar videos instead of the whole video corpus. DenoteΘi as
the set of similar videos. The problem of annotation becomes
equivalent to searchingΘi and collecting most probable tags
from Θi. Eqn. 2 can then be reformulated as:

t∗ = argmax
t

p(t|Θi)p(Θi|Vi), (3)

wherep(Θi|Vi) acts as the search process to identify similar
videos, andp(t|Θi) represents the tag generation process.
Based on the equation, a two-step solution for data-driven web
video annotation is proposed:

• Scalable search: retrieving a collection of near-duplicate
videosΘi, and

• Tag annotation: mining annotationst∗ from the tags
associated with videosΘi.

B. Framework

Figure 1 illustrates the proposed framework for both cross-
source and cross-time tagging. Two major components in
this framework are: efficient near-duplicate search and tag
annotation. For offline indexing, videos are first crawled from
web to form a large corpus. These videos are pre-processed
by performing shot boundary detection and then keyframe
selection. Local keypoints are extracted from the keyframes
and clustering is carried out to quantize the keypoints into
a visual dictionary. Each keypoint in the keyframes is then
encoded with a visual word in the dictionary, and this forms
a bag of words for each keyframe. Inverted file indexing
plus Hamming embedding [7] is employed to support scalable
keyframe retrieval with fast similarity evaluation. Similar
procedure is applied to the given queries.
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Fig. 1. Framework for data-driven web video annotation.

In near-duplicate search, the keyframes which are similar
to the query keyframes are retrieved from the video corpus
via visual keywords and inverted file (Section IV-A). The
retrieved keyframes are further re-ranked according to their
geometric consistency with the query. An efficient evaluation
based on weak geometric consistency checking is proposed
(Section IV-B). Finally, the similarity of a video is determined
by aggregating the scores of keyframes in the video and
weakly considering their temporal consistency with the query.
The video-level similarity aggregation is based on 2D Hough
Transform together with a proposed reverse-entropy measure
(Section IV-C).

In tagging, the collection of candidate tags is pooled from
the set of retrieved videos. An effective measure which con-
siders tag frequency, the number of tags, and the similarity
weight of videos is proposed to rank the tags according to their
relevance (Section V). Finally, the first few tags with higher
rank are recommended for annotating the query videos.

IV. SCALABLE NEAR-DUPLICATE V IDEO RETRIEVAL

A. Visual Keywords (VK) and Inverted File Indexing

To ensure a reliable retrieval, we adopt local keypoint de-
scriptors as the features for near-duplicate retrieval. Nonethe-
less, the number of keypoints in a keyframe can range from
hundreds to thousands, while the dimension of descriptor is
typically high. Matching keypoints between two keyframes
becomes extremely slow. Thus, we employ clustering ap-
proach by first quantizing keypoints into a visual dictionary
(codebook). Each entry in the dictionary (or centroid of a
cluster) corresponds to a word. By mapping each keypoint
in a frame to the nearest word, this forms a bag-of-words,
which is represented in the form of histogram, describing the
visual content of the keyframe. Each bin in the histogram
accumulates the number of words found in the keyframe. Mea-
suring the similarity between two keyframes is then performed
by bin-to-bin matching of their histograms. Denotem as the
vocabulary size of words, andfk(Ii) as the weight ofkth
bin in keyframeIi, we usecosine similarityto measure the

closeness between keyframesIi andIj :

simij =

∑m
k=1 fk(Ii) × fk(Ij)√∑m

k=1 fk(Ii)
2 ∑m

k=1 fk(Ij)
2
. (4)

To ensure the coverage of dictionary, the number of words
is usually large (e.g.,≥ 10,000). Directly matching two
histograms using Eqn. 4 will not be extremely fast in this case.
Nevertheless, since the histogram is normally very sparse,the
matching can be efficiently conducted by exploiting structure
such as inverted file index [22] which is popularly used in
text information retrieval. The index stores the keyword-image
relationship, in which each entry (or row) corresponds to a
keyword and links to the list of keyframes which contain
the word. As a consequence, given a keyframe, the words
are hashed into the index and the matched keyframes are
retrieved. Cosine similarity is thus only evaluated for a subset
of keyframes in the dataset and for those non-zero entries in
the histograms.

We adopt two techniques: 2-level vector quantization (VQ)
and Hamming embedding (HE) [7] to further speed up the
online retrieval time. Multiple-level VQ allows efficient en-
coding of keypoints to keywords without exhaustive search
of the nearest words. To reduce the information loss caused
by VQ, HE maintains a binary signature for each keypoint.
The signature is indexed in the inverted file to facilitate the
measurement of keypoint distances for keypoints falling into
the same visual word. During retrieval, any two matched visual
words can be pruned if the Hamming distance between their
signatures is large. This results in less words being involved
in similarity measuring and also the subsequent steps of
geometric checking. In our implementation, we choose 32-bit
binary signature. The threshold for Hamming distance is setat
15 such that any matched visual words whose distance exceeds
this value will be pruned. In our experiment, querying a
keyframe against a dataset of 632,498 keyframes only requires
0.08 seconds to complete.
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(a) Near-duplicate keyframes.

(b) Dissimilar keyframes.

Fig. 2. Two pairs of keyframes (left) with similar matching scores based on
Eqn. 4. Portion of the matched visual words are highlighted (right).

B. Keyframe-level Geometric Consistency Checking

The keypoint quantization introduces ambiguity in visual
matching. For example, words from the same bin are al-
ways matched regardless of their actual distance measured
by keypoint descriptors. For words from large clusters, this
could cause excessive number of false matches. Thus geo-
metric consistency checking is a post-processing step aiming
to examine the coherency of matches between two sets of
visual words. Figure 2 shows an example that two pairs of
keyframes have similar matching scores as computed by Eqn.
4. However, visually the keyframes in Figure 2(b) are very
different. Ideally, by recovering their underlying geometric
transformation from the word matches as shown in Figure 2,
the dissimilar keyframes can be pruned.

1) Weak Geometry Consistency (WGC): Recovery of
transformation is often done by RANSAC [18]. However, such
estimation is always costly and not appropriate when large
number of keyframes are required to be investigated. WGC [7]
is a recently proposed technique which exploits the weak or
partial geometric consistency without explicitly estimating the
transformation by checking the matches from one keyframe
to another. Given two matched visual wordsp(xp, yp) and
q(xq, yq) from two keyframes respectively, WGC estimates
the transformation fromp to q as:
[

xq

yq

]
= s×

[
cos θ − sin θ

sin θ cos θ

]
×

[
xp

yp

]
+

[
Tx

Ty

]
, (5)

where(xp, yp) and (xq, yq) are the 2D spatial positions ofp
andq in x-y coordinate. In Eqn. 5, there are three parameters
to be estimated: the scaling factors, the rotation parameterθ
and the translation[Tx, Ty]t. In WGC, only the parameterss
andθ are estimated. For efficiency, the scale and rotation can
be derived directly from the local patches ofp andq without
the explicit estimation of Eqn. 5. The scales is approximated

as:
s̃ = 2(sq−sp), (6)

where sp, sq are the characteristic scales of wordsp and q
respectively. The scale values of words are known by the
time when their corresponding keypoints (or local patches)are
detected. For instance, the valuesp indicates the scale level
which p resides in the Laplacian of Gaussian (or Difference
of Gaussian) pyramid [17], [18]. Similarly, the orientation θ

is approximated as:
θ̃ = θq − θp, (7)

whereθp andθq are the dominant orientations of visual words
p andq estimated during keypoint detection [17].

WGC computeslog(s̃) and θ̃ for each matched visual
word between two keyframes. By treating scale and rota-
tion parameters independently, two histogramshs and hθ,
referring to the scale and orientation consistency respectively,
are produced. Each peak in a histogram means one kind of
transformations being performed by a group of words. Ideally,
a histogram with one or few peaks hints the consistency
of geometry transformation for most visual words in the
keyframes. WGC utilizes the consistency clue to adjust the
similarity of keyframes computed in Eqn. 4 by:

simwgc(i, j) = min(max(hs), max(hθ)) × simij . (8)

The similarity is boosted, by a factor corresponding to the
peak value in scale or orientation histogram, for keyframe pairs
which show consistency in geometry transformation.

2) Enhanced Weak Geometry Consistency (E-WGC): The
merit of WGC lies in its simplicity and thus efficiency in
transformation estimation. Nevertheless, such estimation is not
always reliable. The main reason for unreliable estimation
is due to the fact that the characteristic scale and dominant
orientation estimated from keypoint detection are not always
discriminative enough. For example, although DoG (Differ-
ence of Gaussian) detector adopts 5 levels of Gaussian pyramid
for keypoint localization, most points are detected at level
1. As a consequence, the scale histogram always has a peak
corresponding to level 1.

We propose the enhancement of WGC by also including
translation information. Combining equations 5, 6 and 7, we
have the WGC estimation as:

[
x̃q

ỹq

]
= s̃ ×

[
cos θ̃ − sin θ̃

sin θ̃ cos θ̃

]
×

[
xp

yp

]
. (9)

Deriving from equations 5 and 9, the translationτ of the
visual wordq can be efficiently estimated by

τ =
√

(x̃q − xq)2 + (ỹq − yq)2. (10)

Ideally, the matched visual words which follow consistent
transformation should have similar values ofτ , and thusτ
can be used to directly adjust the keyframe similarity as in
Eqn. 8. There are two advantages with this simple scheme.
First, the inclusion of translation information provides another
geometric clue in addition to scale and rotation. Second,
Eqn. 10 has jointly integrated the clues from scale, rotation
and translation, thus generating one histogram ofτ is enough
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for similarity re-ranking. In addition, Eqn. 10 can be trivially
computed without incurring additional computational cost.
Since Eqn. 10 is an enhanced version of equations 6 and 7,
we name our approachenhancedWGC, or E-WGC in short.

In E-WGC, only one histogram is generated based on the
values of translationτ . Similar to WGC, histogram peak is
located to re-rank the keyframe similarity. For robustness, the
peak is smoothed by considering the moving average of two
neighboring bins. As a result, the value of peak is computed
as:

τpeak = |hi| + |hi−1| + |hi+1| − 2 ×

∑m
j=1 |hj|

m
, (11)

wherehi is the bin with peak value, andm is the number of
histogram bins. Ultimately, the keyframe is re-ranked as:

simewgc(i, j) = (
τpeak

Mvk

)γ×simij , (12)

whereτpeak is normalized byMvk which denotes the number
of matched visual words in two keyframes. We amplify the
ratio of τpeak to Mvk by a factor ofγ so as to increase the
gap between similar and dissimilar keyframes. The factorγ is
a parameter empirically set equal to 3, which will not affect
the re-ranking result. We include this factor for the purpose
of selecting only few most similar videos for tagging, which
will be further elaborated in Section V.

Figure 3 compares WGC and E-WGC. Figures 3(a)-(b)
show the scale and rotation histograms of WGC from the
matches of visual words in Figures 2(a) and 2(b) respectively.
Figures 3(c)-(d) show the translation histograms1 of E-WGC in
Figure 2. For WGC, despite that the keyframes in Figure 2(a)
are the rotated version of one another, there are two peaks
found in the difference of̃θ histogram of 3(a). Similarly, by
observing the histograms in Figure 3(b) computed from the
keyframes in Figure 2(b), there are apparent peaks in both
histograms, though the keyframes in Figure 2(b) are dissimilar.
As a result, the re-ranking scheme in Eqn. 8 incorrectly boosts
their similarity in this case. In contrast, as seen in Figures 3(c)-
(d), the translation histogram of E-WGC shows an apparent
peak for the near-duplicate pair in Figure 2(a), while there
is no peak with high score for the dissimilar keyframes in
Figure 2(b). The re-ranking formula in Eqn. 12 therefore
boosts the similarity of Figure 2(a) but not Figure 2(b).
Compared to WGC, E-WGC can more effectively distinguish
near-duplicates from dissimilar keyframes.

C. Video-Level Similarity Aggregation

Similarity aggregation involves measuring the sequence
similarity for videos where their keyframes are fully or par-
tially matched to the keyframes of a query video. Given a set of
keyframe pairs from a videoVk and a queryQ, the similarity
betweenVk andQ can be counted by aggregating the number
of keyframe matches. Such measure, nevertheless, does not
consider temporal consistency and the noisy matches can be
easily included in similarity counting. Hough Transform (HT)
is a technique aiming to aggregate the keyframe matches

1Note that the histograms are normalized byMvk.
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(a) WGC histograms for Fig.2(a).
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(b) WGC histograms for Fig.2(b).
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(c) E-WGC histogram for Fig.2(a).
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(d) E-WGC histogram for Fig.2(b).

Fig. 3. Comparison between WGC and E-WGC: (a) and (b) are the scale
and rotation histograms of WGC; (c) and (d) are the translation histograms
for E-WGC. For WGC, there are obvious peaks for both near-duplicate
and dissimilar keyframes. In E-WGC, an apparent peak is found only in
the histogram of near-duplicate keyframes. Therefore, E-WGC is capable of
distinguishing near-duplicate from dissimilar keyframes.

by weakly considering their temporal consistency [4]. HT
is basically a voting scheme which accumulates scores from
matches with similar time lags. Given a keyframe pairIi and
Ij with similarity scoresimewgc(i, j) as computed in Eqn. 12
and temporally located at timet1 and t2 of videosVk andQ
respectively, the time lag is computed as:

δi,j = t1 − t2. (13)

HT aggregates the similarity score as a result of one
keyframe match into a 2-dimensional histogram, with one
dimension as the video ID and the other dimension as the time
lag. In this histogram, video ID is a unique integer assigned
to a video, and the range of time lag is quantized into bins
by a bandwidth ofδ0. Each keyframe matching pairIi andIj

contributes a score ofsimewgc(i, j) to the bin[k, b], wherek is
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Fig. 4. Due to quantification error of visual words, a keyframe may be
matched to multiple keyframes in another video. The numbersassociated with
edges are the similarity scores computed with Eqn. 4, and thepatches denote
the matched words

the video ID ofVk andb=⌊ δi,j

δ0

⌋. Consequently, a peak in the
histogram, in the form of a triple[k, b, scorekb], corresponds
to an accumulated scorescorekb =

∑
i,j simewgc(i, j) of

keyframes inVk which are temporally aligned with the query
videoQ (i.e.,b=⌊ δi,j

δ0

⌋). In other words, peaks in the histogram
hint the video segments which are similar toQ. Detecting
the peaks is basically equivalent to finding the partial near-
duplicates ofQ.

Let H[k, b] be the 2D Hough histogram, where1 ≤ k ≤ n,
andn is the number of videos having the matched keyframes
with query Q. HT measures the similarity of videoVk to Q
by

Simht(Vk, Q) = maxb(H[k, b]), (14)

In other words, the similarity of two videos is determined by
the maximum aggregated similarity score of keyframes from
both videos which are consistently matched along the temporal
dimension.

1) Reverse-Entropy Ranking: While Hough Transform is
efficient to implement, it has the deficiency that the influence
of noisy matches is not carefully tackled. As indicated in [4],
the similarity aggregation is often mixed with considerable
portion of false positive matches. The reasons are mainly due
to two practical concerns. First, shot boundary detection is not
always perfect. False detection can cause excessive numberof
shots (and keyframes) which are similar to each other within
a video. As a consequence, this often results in one keyframe
from a video being matched to several keyframes in another
video or vice versa. Second, the imprecise matching of visual
words due to quantization error, as well as E-WGC which only
weakly considers the geometric transformation, also introduces
random false matches. These practical concerns jointly make
the similarity aggregation in HT lack of robustness. Figure4
illustrates an example where the second keyframe from a video
is matched to almost all the keyframes of another video. It
causes the video pair to have high aggregated score according
to Eqn. 14.

To solve this problem, we revise Eqn. 14 by taking into
account the granularity of matching. The intuitive idea is that
a keyframe which matches to multiple keyframes in another
video is given less priority when determining video similarity.
Thus, the aim is to lower the scores of video segments which
include excessive matching. Let the 2D Hough bin[k, b] as
the peak which gives rise to the similarity between videosVk

andQ as in Eqn. 14, and assume that the bin corresponds to a

segmentSv from Vk and another segmentSq from Q. Let Nq

be the number of keyframes inSq, andηl be the number of
keyframes fromSv with matches to thelth keyframe ofSq.
We employ entropy to measure the associative mapping from
Sq to Sv as

RE(Sq → Sv) =
−1

log Z
(

Nq∑

l=1

ηl

Z
× log

ηl

Z
), (15)

whereZ =
∑Nq

l=1 ηl is the total number of keyframe matches
between videosVk andQ. The value of entropy ranges within
[0, 1]. The measure of entropy depends upon the granularity of
matches from one video to another. Matching which exhibits
one-to-one correspondence will receive the highest entropy
value of 1. In contrast, for the cases of one-to-many or many-
to-one matching, the entropy value will be low. A special case
happens when only one keyframe inSq has matches, and the
keyframe matches to all the keyframes inSv. In this case, the
value of entropy will be 0. Since the definition of entropy here
is different from the conventional definition where a value of
1 indicates uncertainty while a value of 0 indicates confident
match, we name the entropy measure in Eqn. 15 asReverse-
Entropy (RE)measure.

The measure of RE is not symmetric, meaning that the
matches forSq → Sv will have a different RE value from
that of Sv → Sq. Thus the final value of RE is defined as:

RE(Vk, Q) = min(RE(Sq → Sv), RE(Sv → Sq)). (16)

We use the RE measure in Eqn. 16 to estimate the similarity
between videosVk andQ as following:
Simre(Vk, Q)

=

{
Simht(Vk, Q) × RE(Vk, Q)2 if RE(Vk, Q) 6= 0
Simht(Vk, Q) × 1√

Z
Otherwise

(17)
The original similarity is devalued by the square of RE to

impose a heavier penalize on videos having noisy matching
segments. Notice that when RE equals to 0, it indicates that
only one keyframe of a video (eitherQ or Vk) is matched
to keyframes of another video. In this case, the similarity
is weighted by 1√

Z
so as to avoid the similarity score from

dropping abruptly v to zero.

D. Time and Space Complexity

While the framework involves a variety of components,
the retrieval speed is highly efficient mainly due to the use
of inverted file which is essentially a hashing technique.
There are several factors which govern the time complexity of
retrieval. These include the size of visual words (w), number
of keyframes per query (m), and number of keypoints per
keyframe (p).

Mapping a keypoint to a word and eventually retrieving
the list of keyframes containing the word takesO(w) time.
The speed can be improved toO(log(w)) with the use of
multi-layer vector quantization. Thus, mapping the keypoints
from an entire query video to visual words for retrieval costs
O(mplog(w)). The size of candidate videos retained for E-
WGC and HT is query dependent. Assuming that there are
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n keyframes being retrieved and each keyframe containsq

keypoints, in the worst case, E-WGC will takeO(mnpq) to
verify every matching point, and HT will takeO(mn) to
check temporal alignment. Summing up all the components,
the complexity isO(mplog(w)) + O(mnpq) + O(mn). Let
K be the total number of keyframes indexed in dataset. In
practice,m, n << K, and the average number of keypoints
(p and q) is typically about 260. Due to the use of HE, the
number of keypoints to be verified by E-WGC can be reduced
by another 70-85%. In brief, the time complexity is sub-linear
to the number of keyframes and keypoints in a dataset, and in
practice, the retrieval speed can be very efficient.

In terms of space complexity, each visual word in the
inverted file stores the keyframe ID (4 bytes), spatial location
of keypoint (4 bytes), scale (2 bytes), dominant orientation
(2 bytes), and Hamming signature (4 bytes). Thus, the space
is linear to the number of keypoints to be indexed. For our
dataset of 144G bytes and 1,040 hours of videos, the size of
inverted file is 2.45G.

V. TAG ANNOTATION ON WEB V IDEOS

Once the near-duplicate or partial near-duplicate videos of
a given query are retrieved, a pool of user tags associated
with these videos can be acquired. Tags associated with videos
are usually in the form of a freely-chosen and short list of
keywords. These keywords might give descriptions to video
content, with additional context information. Since most users
are lazy and not expected to spend much time to tag videos,
it is expected the tags will be incomplete, diverse and with
redundant and noisy information. Spelling errors and special
characters may appear frequently. The mission of data-driven
annotation is to select a small number of representative tags
to annotate the un-tagged videos.

A scenario we assume here is that tags commonly given by
users are more likely related to the actual content of videos,
and less likely to be spam. Generally speaking, these tags have
higher chance of being re-used for videos of similar content.
In other words, tag frequency gives clue to the relevance of
a tag to videos. In addition, the number of tags given per
video has several implications. On the positive side, a large
number of tags hints a diverse video content. On the downside,
these tags may simply be a verbose description of a video
content when there are few or no tags which can uniquely
describe the video content. In contrast, for a video tagged with
few keywords, it is reasonable to expect that these keywords
are given based on impression or intuition directly observable
from the video. Such tags are more likely related to the main
theme and content of videos.

Based on this intuition, we propose a measure to rank
the relevance of tags based on tag frequency, the number
of tags associated to a video, and the video similarity. Let
Θi = V1, V2, ..., Vm be the set ofm near-duplicate videos
being retrieved and∆ = t1, t2, ... be the set of tags associated
with videos inΘi. The relevancy of a tagti to queryQ is
defined as:

score(ti) =

m∑

k=1

tfik

|Vk|
× Simre(Vk, Q), (18)

wheretfik is a binary value of 0 or 1, denoting the absence or
presence of tagti in Vk, |Vk| is the number of tags withVk,
andSimre(Vk, q) is the video-level similarity. Notice that the
importance of a tag is also reflected by the similarity between
Q and Vk. In other words, the tags from videos which are
fully duplicate is expected to carry higher weights than those
from videos which are partially duplicate toQ. Ultimately, the
score of tags determines the rank list of tags recommended to
the queryQ for annotation. Notice that the ability to rank
tags according to their relevancy and popularity can indeed
alleviate the adverse effect introduced by noisy user-tags. As
a result, the rank list provides a more complete tag list, andin
addition, the subjective tags are pushed to the bottom of list.

VI. EXPERIMENT SETUP

A. Datasets

To verify the robustness, effectiveness and efficiency of the
proposed works for web video annotation, two web video
datasets (DS SOURCE andDS TIME ) are collected to eval-
uate the performance. DatasetDS SOURCE was collected
in November, 2006, which includes videos from YouTube,
Google, and Yahoo! video search engines. Our aim is to anno-
tate the Google and Yahoo! videos using YouTube resource.
We selected 24 queries designed to retrieve the most viewed
and top favorite videos from YouTube. Each text query was
issued to YouTube, Google video, and Yahoo! video separately
and we collected all retrieved videos as our DSSOURCE.
This collection consists of 12,790 videos, which is the same
dataset used in [29], [30]. To test the scalability of near-
duplicate detection, we further downloaded another 5,000
videos from YouTube using different sets of queries. The final
dataset eventually consists of 1,040 hours of videos. We use
1,428 + 462 videos from Google and Yahoo! respectively
as the testing queries because they have no associated tags.
The query information and the number of near-duplicates in
DS SOURCE are listed in Table I. The 3rd column shows the
number of videos from YouTube, while the number of web
videos from Google and Yahoo! is listed in the 4th column.
The 5th and 6th columns list the number and percentage of
near-duplicates among which videos from Google and Yahoo!
can find the corresponding near-duplicates in the YouTube.
For example, 85 out of 93 videos from Google and Yahoo! in
Query 19 (“Sony Bravia”) have corresponding near-duplicate
videos in YouTube. On average, there are 38.6% videos from
Google and Yahoo! having counterparts in YouTube.

Since the distribution of video data evolves as the time goes
by, it is expected that the uploaded videos might deviate from
the original ones, and the number of near-duplicate videos
should diminish. To verify the robustness of proposed method,
datasetDS TIME was collected in December 2008, using
the same queries as in DSSOURCE but crawled at different
time. The objective is to annotate the newly added videos
using previous data. Table II shows the details. For each
topic, we retrieve top 500 videos returned by YouTube search
engine. Among these videos, the ones having time overlapping
with videos in the first dataset DSSOURCE are removed.
In Table II, the third column lists the number of videos in
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TABLE I
THE INFORMATION OF DATASETDS SOURCE. ANNOTATING VIDEOS OF

GOOGLE AND YAHOO!(G+Y) BY USING YOUTUBE (YT)

ID Topic YT G+Y ND %

1 The lion sleep tonight 664 128 61 47.7
2 Evolution of dance 354 129 29 22.5
3 Fold shirt 337 99 61 61.6
4 Cat massage 293 51 22 43.1
5 Ok go here it goes again 263 133 17 12.8
6 Urban ninja 682 89 40 44.9
7 Real life Simpsons 249 116 40 34.5
8 Free hugs 489 50 32 64
9 Where the hell is Matt 196 39 9 23.1
10 U2 and green day 277 39 8 40.0
11 Little superstar 229 148 18 12.2
12 Napoleon dynamite 769 112 33 29.5
13 I will survive Jesus 376 40 30 75.0
14 Ronaldinho ping pong 79 28 11 39.3
15 White and Nerdy 1495 276 70 25.4
16 Korean karaoke 180 25 16 64.0

17
Panic at the disco I write

609 38 9 23.7sins not tragedies
18 Bus uncle 453 35 23 65.7
19 Sony Bravia 473 93 85 91.4
20 Changes Tupac 178 16 9 56.3
21 Afternoon delight 412 37 10 0.27
22 Numa Gary 360 62 34 54.8
23 Shakira hips don’t lie 1146 176 42 23.9
24 India driving 220 67 13 19.4
- Others* 5000 - - -

Total 15720 1870 722 38.6%

* Others are videos randomly downloaded in 2009 using queries different
from the 24 topics.

the DS SOURCE dataset, while the fourth shows the number
of web videos newly collected. The 5th and 6th columns
demonstrate the number and percentage of newly crawled
videos that can find the near-duplicate in the DSSOURCE
dataset. Query “I will survive Jesus” still has a high per-
centage of near-duplicates (73.3%) for videos uploaded from
December 2006 to December 2008. Based on our statistics, the
average percentage of near-duplicate videos is 13.5%, which
is smaller than the percentage in DSSOURCE. Currently
a portion of fully duplicate videos has been removed by
YouTube, and there is a two year interval between these
dataset collections. The topics may become unpopular and the
contents can deviate from the original ones. These are the
reasons for a relatively lower percentage of near-duplicates
compared to DSSOURCE.

According to our statistics, among the 722 (1,141) near-
duplicates used as testing queries in DSSOURCE (TIME),
there are approximately 35.9% (27.2%) having at least one
exact duplicate in the reference set. Another 63.1% (72.8%)
of queries have near-duplicates due to various forms of editing
effects or changes in camera viewpoint. Among them, some
videos are either trimmed or inserted with new materials
resulting in partial near-duplicates.

B. Pre-Processing

Shot boundaries are detected and each shot is represented
by a keyframe. Totally, there are 398,009 keyframes in
DS SOURCE. Local keypoints are detected by Harris-Laplace
and described by SIFT [17]. For learning visual dictionary,we
collect 742,139 local features from 2,000 keyframes which
are randomly selected from the DSSOURCE dataset. The

TABLE II
THE INFORMATION OF DATASETDS TIME. A NNOTATING NEWLY

CRAWLED DATASET DS TIME (NEW) BY PREVIOUSLY CRAWLED
DS SOURCE (OLD)

ID Topic OLD NEW ND %

1 The lion sleep tonight 792 395 82 20.8
2 Evolution of dance 483 414 9 2.2
3 Fold shirt 436 355 35 9.9
4 Cat massage 344 433 10 2.3
5 Ok go here it goes again 396 255 13 5.1
6 Urban ninja 771 337 53 15.7
7 Real life Simpsons 365 304 20 6.6
8 Free hugs 539 324 0 0.0
9 Where the hell is Matt 235 437 7 1.6
10 U2 and green day 297 328 54 16.5
11 Little superstar 377 397 0 0.0
12 Napoleon dynamite 881 326 47 14.4
13 I will survive Jesus 416 326 240 73.6
14 Ronaldinho ping pong 107 160 61 38.1
15 White and Nerdy 1771 334 76 22.8
16 Korean karaoke 205 350 11 3.1

17 Panic at the disco I write 647 375 48 12.8
sins not tragedies

18 Bus uncle 488 250 0 0.0
19 Sony Bravia 566 392 65 16.6
20 Changes Tupac 194 446 75 16.8
21 Afternoon delight 449 426 37 8.7
22 Numa Gary 422 375 89 23.7
23 Shakira hips don’t lie 1322 342 92 26.9
24 India driving 287 378 8 2.1
- Others* 5000 - - -

Total 17790 8459 1141 13.5%

* Others are videos randomly downloaded in 2009 using queries different
from the 24 topics.

publicly available toolkit CLUTO [11] is employed to cluster
local points into 20,000 clusters. To compare the performance,
we also extract the color moment feature. Each keyframe
is depicted with the first three color moments (i.e., mean,
standard deviation, and skewness) extracted in Lab color space
over 5× 5 grid partitions, which results in a 225 dimensional
feature vector.

Due to the noisy user-supplied tag information, special
characters (e.g., ?, !, :, #,>, |) are first removed. Then the
standard Porter stemming is applied to stem the text words.
After a serial of data preprocessing (such as word stemming,
special character removal, Chinese word segmentation, andso
on), there are 14,218 unique tag words.

C. Performance Metrics

1) Near-Duplicate Video Retrieval:To generate the ground-
truth, two assessors are asked to watch the query and then
browse through the videos in datasets to manually find the
corresponding near-duplicate videos. The labeling is based
on visual impression that the videos which are transformed
versions of one another, showing changes either because of
editing operations or camera settings or any combination of
them, are regarded as near-duplicates. Partial near-duplicate
videos, with at least one shot being near-duplicate, are also
included as the ground-truth.

We use recall, precision and accuracy to evaluate the
retrieval performance. These measures examine the ability
to retrieve all relevant matches (recall), to minimize false
positives (precision), and to signal alarm if the query is novel
(accuracy). Recall refers to the percentage of near-duplicate
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TABLE III
PERFORMANCECOMPARISON OFNEAR-DUPLICATE V IDEO RETRIEVAL ACROSSSOURCES ONDS SOURCE.

Precision Recall
Topic LSH-E VK VK+ VK++ VK# LSH-E VK VK+ VK++ VK#

1 0.989 0.995 0.915 0.983 0.999 0.900 0.917 0.852 0.986 0.986
2 0.927 0.403 0.269 0.861 0.987 0.354 0.594 0.302 0.969 0.906
3 0.926 0.992 0.929 0.992 0.997 0.803 0.869 0.896 0.973 0.940
4 1.000 1.000 0.999 1.000 1.000 0.952 0.979 1.000 1.000 1.000
5 0.987 0.847 0.735 0.988 0.993 0.861 0.937 0.949 0.962 0.987
6 0.044 0.865 0.629 0.995 0.998 0.729 0.940 0.977 0.985 0.992
7 0.980 0.983 0.824 0.999 1.000 0.856 0.949 0.966 1.000 1.000
8 0.050 0.880 0.683 0.981 0.994 0.612 0.633 0.633 0.796 0.755
9 0.213 0.136 0.278 0.936 0.978 0.923 0.962 0.962 0.962 0.962
10 0.113 0.68 0.341 0.874 0.917 0.646 0.954 0.969 0.969 0.985
11 0.137 0.991 1.000 0.982 1.000 0.609 0.652 0.841 0.986 1.000
12 1.000 0.876 0.958 0.995 0.994 0.490 0.903 0.916 0.961 0.968
13 0.998 1.000 0.999 1.000 1.000 0.723 0.992 0.863 1.000 1.000
14 0.222 0.172 0.390 0.969 0.973 0.019 0.925 0.925 0.925 1.000
15 0.525 0.903 0.865 0.997 0.999 0.872 0.964 0.968 0.974 0.971
16 0.110 0.887 0.965 0.993 0.993 0.827 0.865 0.923 0.962 1.000
17 0.263 0.937 0.984 0.935 0.941 0.310 0.957 0.933 0.995 1.000
18 0.060 0.373 0.494 0.707 0.926 0.412 0.897 0.779 0.956 1.000
19 0.035 0.925 0.875 0.991 0.995 0.218 0.979 0.982 0.994 0.991
20 0.979 0.539 0.428 0.928 0.998 0.625 0.900 0.875 0.975 0.975
21 0.031 0.684 0.435 0.978 0.992 0.382 0.985 1.000 1.000 1.000
22 0.217 0.554 0.264 0.900 0.977 0.538 0.670 0.681 0.901 0.901
23 0.198 0.772 0.817 0.972 0.984 0.625 0.701 0.669 0.982 0.985
24 0.380 0.151 0.230 0.977 1.000 0.651 0.721 0.884 0.930 0.884

Average 0.474 0.731 0.679 0.956 0.985 0.622 0.869 0.864 0.964 0.966

videos being correctly retrieved compared to the ground-truth.
Precision means the percentage of correctly retrieved videos
among the returned videos. Accuracy refers to the percentage
of queries which are correctly judged as having near-duplicates
to a target dataset.

2) Tag Annotation:To evaluate the annotation performance,
one way is to directly compare the tags generated by the
proposed approach with the original ones supplied by users.
Nonetheless, those tags tend to be noisy, incomplete and
ambiguous. Simply treating user tags as ground truth is not
completely objective. Therefore, we adopt manual labelingto
generate the ground truth. First, we pool the keywords from
tags and titles of near-duplicate videos. Then, for each video,
the keywords are recommended, one after another from the
pool, to the assessors. The assessors determine whether to
accept the keywords as tags, and have option to add new tags
after browsing the video and suggest tags from the pool. The
evaluation is conducted by comparing the tag setTS suggested
by the proposed approach in Section V and the ground truth
TG. The overlap betweenTS andTG is then used to examine
the tag quality. In other words, a tag is regarded correct if the
tag also appears in the ground truth. Similar to previous works
on image annotation [21], [23], we adopt three measures as
the performance metrics, which evaluate the performance from
different aspects:

• Mean Reciprocal Rank (MRR): MRR measures the re-
ciprocal of the position in the ranking where the first
relevant tag is returned by the system, averaged over all
the videos. This measure provides insight on the ability
of the system to return a relevant tag at the top of the
ranking. The value of MRR is within the range of [0, 1].
A higher score indicates a better performance. A value
of 1 indicates that all top one ranked tags are relevant.

• Success at Rank K (S@K): S@K measures the proba-
bility of finding a good descriptive tag among the topk
recommended tags.

• Precision at Rank K (P@K): P@K measures the propor-
tion of retrieved tags that are relevant at rankk.

VII. E VALUATION

A. Performance of Near-duplicate Video Retrieval

A critical step in model-free annotation process is to locate
the near-duplicate videos for the query video. The performance
of near-duplicate video retrieval directly affects the quality of
recommended tags. As a result, the effectiveness of retrieval
is one of the major concerns.

We compare the performance of following approaches:
1) LSH-E: locality sensitive hashing embedding on color
moment, 2) VK: visual keyword search together with inverted
file index and 2D HT for video similarity measure, 3) VK+ [7]:
visual keyword search with WGC checking and 2D HT, 4)
VK++: visual keyword search plus E-WGC checking and 2D
HT, and 5) VK#: VK++ with RE ranking. LSH-E is a recently
proposed technique in [3] for scalable video search. Using
LSH, the technique embeds color moment into a long and
sparse feature vector. Inverted file is then applied to support the
fast retrieval of long vectors. We use the same implementation
provided by [3]. Cosine distance measure is used for forming
the embedded space. The corresponding parameters: number
of hash functions in a histogram (B=10), folding parameter
(M=4), and number of histogram (N=18) are optimized and
set according to [3]. The bin widthδ0 in 2D Hough Transform
is tested with different settings (from 150 to 240). Due to the
space limitation, details will not be presented in this paper.
We use the best possible setting of bin width which equals to
200 for all approaches.
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TABLE IV
PERFORMANCECOMPARISON OFNEAR-DUPLICATE V IDEO RETRIEVAL ACROSST IME ON DS TIME.

Precision Recall
Topic LSH-E VK VK+ VK++ VK# LSH-E VK VK+ VK++ VK#

1 0.934 0.131 0.177 0.996 0.999 0.879 0.803 0.797 0.953 0.962
2 0.241 0.845 0.403 0.890 0.991 0.084 0.864 0.876 0.918 0.936
3 0.732 0.936 0.512 0.971 0.996 0.751 0.852 0.975 0.911 0.928
4 1.000 0.996 0.992 0.995 0.997 0.470 0.929 0.958 0.958 0.958
5 0.205 0.343 0.368 0.946 0.984 0.092 0.956 0.981 0.955 0.977
6 0.070 0.468 0.098 0.887 0.946 0.833 0.908 0.954 0.937 0.943
7 0.978 0.759 0.620 0.977 0.995 0.370 0.851 0.856 0.978 0.983
8 - - - - - - - - - -
9 0.002 0.073 0.155 0.966 0.956 0.059 0.912 0.971 0.912 0.912
10 0.554 0.553 0.241 0.975 0.984 0.678 0.920 0.862 0.828 0.805
11 - - - - - - - - - -
12 0.721 0.689 0.700 0.993 0.994 0.404 0.858 0.896 0.896 0.869
13 0.339 0.937 0.915 1.000 1.000 0.699 0.985 0.985 0.992 0.995
14 0.006 0.142 0.081 0.984 0.99 0.075 1.000 0.988 0.975 0.950
15 0.732 0.872 0.652 0.977 0.998 0.884 0.959 0.979 0.980 0.980
16 0.058 0.172 0.124 0.941 0.974 0.636 0.886 0.955 0.955 0.955
17 0.675 0.429 0.369 0.978 0.994 0.341 0.948 0.943 0.983 0.983
18 - - - - - - - - - -
19 0.158 0.600 0.380 0.987 0.994 0.807 0.890 0.976 0.968 0.971
20 0.380 0.262 0.078 0.913 0.986 0.641 0.946 0.967 0.957 0.946
21 0.076 0.677 0.651 0.999 0.999 0.636 0.795 0.727 0.841 0.852
22 0.135 0.131 0.053 0.900 0.926 0.426 0.792 0.802 0.911 0.901
23 0.251 0.740 0.689 0.992 0.994 0.436 0.870 0.949 0.952 0.957
24 0.391 0.903 0.743 0.956 0.966 0.960 0.920 0.960 0.960 0.960

Average 0.411 0.555 0.429 0.963 0.984 0.531 0.897 0.922 0.939 0.939

To decide whether a video should be labeled as near-
duplicate, we adopt thresholding technique for all five tested
approaches. In the experiment, the best possible thresholds
are separately identified for each approach on a subset of
DS SOURCE dataset. The thresholds are then applied to all
experiments on DSSOURCE and DSTIME datasets.

Table III and IV list the performance of near-duplicate
video retrieval in DSSOURCE and DSTIME datasets, re-
spectively. The experiments are conducted for queries with
near-duplicates. Therefore, 722 and 1,141 queries are tested for
DS SOURCE and DSTIME, respectively. Overall, VK based
approaches show significantly better performance than LSH-E.
LSH-E is based on color feature, which lacks discriminative
power as the dataset becomes larger. Local feature is a
more favorable choice than global features. Visual keyword
based search generally returns a high recall of near-duplicate
keyframes but mixed with a large portion of false matches.
Although geometric consistency constraint WGC is employed
by VK+, there is no obvious improvement over VK. On
the contrary, E-WGC significantly enhances the performance
of VK++ and VK#, especially for precision. Compared to
VK+, the improvement of VK++ in terms of precision is
over 41% and 124% for DSSOURCE and DSTIME, re-
spectively. In addition to scale and rotation transforms, E-
WGC also integrates the translation transform, which is a
more discriminative measure. Only matches following the
same linear transformation will be kept, which filters out
large amount of false positives while maintaining a high
recall. Hough Transform (HT) weakly considers the temporal
consistency. Unfortunately, its effectiveness can be affected by
noisy matches. With the assistance of reverse entropy (RE),
the performance is further boosted. VK# achieves the best
performance. Noisy keyframe matches are effectively pruned

TABLE V
MAP PERFORMANCE OFNEAR-DUPLICATE V IDEO RETRIEVAL

Dataset LSH-E VK VK+ VK++ VK#

Cross Source 0.514 0.690 0.684 0.849 0.869
Cross Time 0.290 0.463 0.519 0.721 0.762

out, which reduces the possibility of inducing noises into tag
annotation.

Note that the performances of LSH-E, VK and VK+ fluc-
tuate across 24 topics. For topics containing large number
of exact duplicates (or copies), these approaches normally
exhibit satisfactory performance. Such topics include “I will
survive Jesus” (topic-13). On the other hand, for topics having
different versions of near-duplicates as a result of various edit-
ing effects, the performances are usually unsatisfactory.One
example is “Bus uncle” (topic-18) where the original version
is captured by a cell phone. Due to different edited versionsas
well as the low visual quality of original video, the retrieval
results are generally poor. Nevertheless, for VK++ and VK#,
due to the consideration of robustness in geometric checking
and video-level similarity aggregation, their performances are
consistently good for nearly all the tested topics.

To confirm the retrieval performance of five approaches, we
also measure the average precision (AP) of each query topic.
AP is a measure indicating the area under a precision-recall
curve. We measure AP of up to top-500 retrieved items. The
mean AP (MAP) of the five approaches is listed in Table V.
Overall, VK# and VK++ performs significantly better than
other approaches.

B. Performance of Tag Annotation

We evaluate the quality of tags returned for the queries
which have near-duplicates in the reference set. Since the
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average number of user-supplied tags for each video is around
4.6 in the dataset, we evaluate the performance of the top
5 tags in the experiment. In order to evaluate the effect
of the video similarity to tag recommendation, we also test
the performance of VK# but ignoring the weight of video
similarity in Eqn. 18. That is, the video similarity score is
treated as a binary measure. It will contribute 1 if a near-
duplicate video is identified, otherwise it is 0. Therefore,the
approaches is called VK# (Binary). The performance of cross-
source and cross-time annotation is measured according to
MRR, S@5 and P@5, which is shown in Table VI. Overall, the
performance of near-duplicate video retrieval directly affects
the quality of tag annotation. Theoretically, retrieving more
near-duplicate videos can supply more information for the tag
annotation. In practice, as long as a subset of representative
near-duplicate videos with quality tags are retrieved, it already
provides the most essential tags for recommendation. As
indicated by MRR, the suggested tags at the top ranking are
meaningful for all approaches. Therefore, the performance
difference among various approaches is not as apparent as the
results of near-duplicate retrieval.

Both VK and VK+ show less satisfactory performances
across two datasets. Among the retrieved videos, a large
number of videos are falsely detected as near-duplicates, which
cause the pool of candidate tags to be relatively noisy. On
the contrary, with an accurate near-duplicate video retrieval,
VK++ and VK# offer comparably better annotation quality.
The P@5 measure of VK# is around 0.8, which exhibits
satisfactory annotation accuracy. It means that among top 5
recommended tags, nearly 4 of them are closely relevant to
the video content.

To compare the results to a baseline (termed as “Oracle”
in Table VI), we also show the ideal performance when all
ground-truth near-duplicates are perfectly detected. In other
words, Oracle is the results with the similarity scores of true
near-duplicates being set to 1 (see Eqn 18), while others are
weighted with zero scores. From Table V, it can be noticed
that the results of VK++ and VK# indeed approach the ideal
performance.

The top 5 representative tags of some examples are illus-
trated in Figure 5. We can see that the suggested tags are mean-
ingful. For example, the second video belongs to “White and
Nerdy”. In addition to the common words: “white”, “nerdy”
the suggested tags provide new clues and useful information
for this video, such as the author name “al yankovic”, and
his theme “weird al”. It is able to summarize the comments
or view points from several users regarding this set of similar
videos. In addition, abstract tags such as “funny”, which is
difficult to train with model-based approaches, is also included
for two videos in Figure 5. This tag, although somewhat
subjective, is commonly used to annotate similar versions of
videos in our dataset, and is also marked as appropriate by the
assessors. Content-related tags are also suggested. The third
video in Figure 5 is a commercial for “Sony Bravia” TV set.
The dominant content in this video is series of balls bouncing,
and the content is captured by the tags “bounce” and “ball”.
Nevertheless, compared to model-based approaches which can
offer better recall in providing consistent labeling of prominent

TABLE VI
PERFORMANCE COMPARISON FORTAG ANNOTATION

Cross Source Cross Time
Method MRR S@5 P@5 MRR S@5 P@5

LSH-E 0.801 0.872 0.641 0.677 0.807 0.535
VK 0.860 0.930 0.704 0.831 0.895 0.675

VK+ 0.868 0.933 0.714 0.826 0.911 0.674
VK++ 0.961 0.973 0.783 0.956 0.983 0.818

VK# (Binary) 0.901 0.968 0.716 0.891 0.949 0.763
VK# 0.962 0.985 0.785 0.959 0.988 0.815

Oracle 0.967 0.991 0.810 0.990 1.000 0.861

simpson  real  life  intro  funny

nerdy  white  al  weird  yankovic

sony bravia ball  commerce  bounce

anchorman  delight  afternoon  ferrel funny

numa gary brolsma numanumad dance

Video Top 5 Tag Annotation

Fig. 5. Examples for tag annotation.

visual content, the performance of search-based annotation is
dependent on whether the right content of videos is always
correctly tagged by users.

C. Beyond Model-free Annotation

The previous two subsections present the performance based
on the queries which have near-duplicates in the datasets. For
queries which are novel, proper message should be signaled
such that no tags will be recommended for annotation. In
this subsection, we study the ability of four approaches in
determining novel videos. We use all new videos (8,466 in
total) in DS SOURCE and DSTIME as queries for testing
the capability of identifying these new videos. Accuracy is
employed as the evaluation measure. The performance of
four approaches in DSSOURCE and DSTIME datasets is
listed in Table VII, in which the accuracy is averaged over
24 topics. VK and VK+ demonstrate poor performance in
both datasets. Around 15% and 40% of novel videos falsely
identify near-duplicate videos by VK in the reference dataset
for DS SOURCE and DSTIME, respectively. The perfor-
mance in DSTIME is worse than in DSSOURCE. Since
the number of novel videos (7,318) tested in DSTIME is
much larger then the one in DSSOURCE (1,148), it causes
a drop in performance. With E-WGC, VK++ significantly
improves the performance, in which a considerable portion
of false matches is successfully eliminated for DSTIME. By
incorporating RE, VK# boosts the performance, especially for
DS TIME. Because datasets DSSOURCE and DSTIME are
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TABLE VII
PERFORMANCE COMPARISON FOR IDENTIFYING NOVEL QUERIES

Method Cross Source Cross Time

VK 0.850 0.590
VK+ 0.831 0.420

VK++ 0.926 0.805
VK# 0.974 0.904

collected from various sources and at different time periods,
the videos in the datasets may demonstrate totally different
content. Therefore, E-WGC and RE demonstrate inconsistent
improvement for these two datasets. However, we can see
that E-WGC and RE complement each other for different
datasets. Their combination makes VK# a robust approach for
identifying near-duplicate videos while pruning false matches.
More than 97% and 90% novel videos can be correctly
signaled for two datasets.

D. Speed Efficiency and Scalability

The efficiency is a critical factor for consideration, espe-
cially for web scale applications. Mainly the following factors
affect the computation cost: keyframe extraction, local point
feature extraction, visual keyword quantization, and near-
duplicate video retrieval on inverted file. The time costs of
these four factors are listed in Table VIII. According to our
experiment, time cost for HT, RE and tag recommendation
is negligible. Our programs are implemented in C++, and
performed on a PC with Intel Duo Core 3.2GHz CPU and
3G memory. Among all approaches, LSH-E is the fastest. For
one query video, it takes less than 1.5s to fulfill the retrieval.
The time costs for VK based approaches are much higher
because they are operated at the keyframe level and using
local features.

In our dataset, the average length of a query is approx-
imately 3 minutes with about 53 keyframes, and 260 key-
points per keyframe. To process a query of average length,
as shown in Table VIII, in total it takes 84 seconds for
VK, and 98.6 seconds for VK+, VK++ and VK#. Without
geometric consistency checking, VK is about 15% times faster.
From our observation, the use of HE indeed helps to prune
significant amount of potential matches that otherwise have
to be processed by WGC and E-WGC. Compared to more
costly but widely used geometric checking such as RANSAC,
WGC and E-WGC are approximately 40 times faster in our
experiments.

In our current implementation, the most time consuming
parts are the extraction of keypoints and VK quantization.
The excessive number of keyframes and keypoints practically
makes VK based approaches less scalable if compared to
LSH-E. To trade off speed and effectiveness, possible ad-
justment includes using less keyframes and less keypoints.
To provide insights, we experiment a new setting by ex-
tracting one keyframe per shot from query and reducing the
original amount of keypoints by half per keyframe, which
results in an average of 35 keyframes per query. Under this
new setting, VK# only requires 33.1 seconds on average to
complete a query. We conduct simulation for cross-time tag-
ging. The annotation performance drops slightly (MRR=0.949,

TABLE VIII
T IME COST COMPARISON

Method KF Extr. Feat. Extr. VK Quant. Online Retr.

LSH-E 1.0 s 0.4 s - 0.016 s
VK 1.0 s 1.1×53 s 0.41×53 s 0.082×53 s

VK+ 1.0 s 1.1×53 s 0.41×53 s 0.35×53 s
VK++ 1.0 s 1.1×53 s 0.41×53 s 0.35×53 s
VK# 1.0 s 1.1×53 s 0.41×53 s 0.35×53 s

The average number of keyframes in one query video is 53.

S@5=0.978, P@5=0.804), but is still competitive compared
to the original results. Detecting near-duplicates also becomes
slightly less effective with recall=0.921, precision=0.978 and
MAP=0.663.

In practice, for applications which do not require instant
query response, VK# indeed offers reasonable trade-off be-
tween speed and effectiveness. For instance, in the case of
cross-source tagging where the purpose is for improving
search performance of an engine, the tagging can indeed be
performed offline. For cross-time tagging, if user interaction is
not expected, VK# can be run in the background to incremen-
tally enrich or extend the tags provided by users. Otherwise,
LSH-E or VK (with lower sampling rate of keyframes and
keypoints) could be a better choice, in which users can
simply and instantly select appropriate tags recommended by
machine, though with loss in recall for all relevant tags.

VIII. C ONCLUSION AND DISCUSSION

With the rival growth of social media, there are abundant
video resources available online. They are usually accompa-
nied by user-supplied tags, which provide a valuable resource
to explore. Different from traditional approaches which adopt
computer vision or machine learning techniques, we investi-
gate the potential of a data-driven and model-free approach
to annotate the web videos. A simple but effective solution
is proposed by employing the near-duplicate video retrieval
techniques and classifier-free video annotation. An effective
near-duplicate retrieval approach which integrates enhanced
weak geometric constraint (E-WGC), Hough Transform (HT),
and reverse entropy (RE) has been proposed. In particular,
VK# has shown superior capability in pruning out false alarms
compared to the-state-of-art VK technique. Representative tags
are then recommended to annotate using videos from different
sources or time. Experiments on cross-source and cross-time
datasets demonstrate the effectiveness and robustness of the
proposed data-driven approach. Currently, the proposed VK
based approaches cannot be directly extended to cope with
global features. Further research is required to investigate the
proper integration of global and local features for more reliable
and speedy search-based annotation.

Our approach annotates videos by exploiting visual dupli-
cates. As indicated in our cross-source and cross-time datasets,
there are 38.6% and 13.5% videos having corresponding visual
duplicates. In other words, a larger portion of novel videosare
uploaded each day. For novel videos which cannot find the
counterpart in the reference dataset, our approach is unable
to provide meaningful tags. However, once the videos could
find at least one near-duplicate and as the size of reference
dataset continues to grow, our approach can take effect. As a
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remark, the works presented in this paper indeed provide an
efficient way of annotating videos which “look familiar” or
are “partially new but previously seen”.
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