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applications. Collecting a large set of noise-free trainin
examples with sufficient positive samples for learning is
always not easy. Manual annotation of training examples
can be laborious, and most labeling efforts are indeed
spent in annotating negative examples. Considering these

Abstract—With the proliferation of Web 2.0 applications, user-
supplied social tags are commonly available in social medias
a means to bridge the semantic gap. On the other hand, the
explosive expansion of social web makes overwhelming numbe
of web videos available, among which there exists a large
number of near-duplicate videos. In this paper, we investigte

techniques which allow effective annotation of web videosrédm
a data-driven perspective. A novel classifier-free video arotation
framework is proposed by first retrieving visual duplicates and
then suggesting representative tags. The significance ofishpaper
lies in the addressing of two timely issues for annotating gery
videos. First, we provide a novel solution for fast near-duficate
video retrieval. Second, based on the outcome of near-duphte
search, we explore the potential that the data-driven annattion

could be successful when huge volume of tagged web videos is

freely accessible online. Experiments on cross sources (atating
Google videos and Yahoo! videos using YouTube videos) andoss
time periods (annotating YouTube videos using historical dta)
show the effectiveness and efficiency of the proposed clagsi-
free approach for web video tag annotation.

I. INTRODUCTION

difficulties, building a large set of classifiers scalable fo
annotating most of the concepts in web videos is beyond
the current state-of-the-art technologies.

o The size of vocabulary is huge and the meaning of
concepts may change dynamically. In social media, for
example, a word may evolve over time and can change
according to context. Novel words or phrases may emerge
when new topics are being discussed. Learning classifiers
in such scenario is difficult to cope with and completely
model the evolving nature of web environment.

The emergence of Web 2.0 technology makes video a
popular social media shared among web users. Some of these
videos come alongside with tags which provide semantics
and context about the video content. An intuitive idea for

Despite the advance in content analysis of videos, ove@mnotation is by utilizing existing tags to label new videos
coming the semantic gap between human perception and Id&asically, given an un-tagged video, similar videos are firs

level visual features remains a challenging problem. kngst retrieved from database. The associated tags of similaogid
approaches in video annotation depend heavily on the machéte examined and then appropriate tags are picked for an-
learning techniques (e.g., Support Vector Machines) to thap notating the new video. From the data perspective point of
low-level features to high-level semantic concepts. Thesse view, such data-driven approaches are possible when there
called model-based approaches normally involve the legrniare enough videos and tags available to characterize any new
of a large set of concept classifiers for labeling the incgmirincoming data. This paves a new way of annotation through
data. In general, these approaches are not competent ganodel-free data-driven methodology. Such techniques hav

managing the ever-increasing number of web videos duerexently been evident in [15], [19], [24], [26], which are

the following two main reasons:

also referred to as “annotation by search”. In [24], a large

« A large amount of balanced labeled samples is oftélptaset of 80 million tiny images is collected for object and

required for effective classifier learning. Neverthelgiss,

scene recognition by nearest neighbor search. In [15],, [26]

scarcity of training examples commonly exists in mang}ontent-based retrieval techniques based on global &satur
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are exploited for image annotation. In [19], tag propagatio
technique is developed by crawling tags of similar videas fo
annotation by using text and global visual features. Simila
in spirit, this paper also explores search-based annatatio
by the nearest neighbor search of examples in large visual
corpus. Different from previous works, our work is based
on effective and efficient near-duplicate video retrievgl b
using local keypoints, targeting for annotating web videos
Compared to similarity-based labeling on images and videos
as in [15], [19], [24], [26], near-duplicates searched byalo
keypoints provide more reliable and accurate informatimm f
video annotation. Keypoint based video search, differearhf
global features, requires the considerations of point hiatg
geometric checking and segment localization, which hate no



yet been explored by other search-based annotation tagmiqInstead, social tagging is widely adopted in various social

In this paper, we investigate two main issues for data-drivenedia websites such as del.icio.us, Flickr, and YouTube. Th
video annotation: (1) how to efficiently search for similadescriptive metadata generated by grass-root users ae oft
videos by local features, and (2) how effectively the tagsxploited for effective organization of web resources.
from similar videos can be recycled for tagging. We consider Existing works on tagging services cover a wide range
the similar videos as the set of duplicate or partial dupdicaof research topics, including resolving tag ambiguity [27]
videos which commonly exist in most social media websitemalyzing usage patterns of tagging systems [5], miningasoc
such as YouTube. For the first issue, we propose an efficiémtierests through tags [14], automating tag assignment [2]
near-duplicate video retrieval framework by consideringge [16], [21], [23], [28], and so on. Among them, there have
aspects: indexing of local visual features, fast pruning dfen numerous efforts on automatic tag suggestion or recom-
false matches at frame-level, and localization of neadidag@ mendation [2], [15], [21], [23], [26]. A common strategy is
segments at video-level. For the second issue, a weightedsuggest tags based on personal history, geographiédncat
majority voting scheme is adopted for tag recommendation lapd time [1]. Co-occurrence of tag is a vivid clue that has
studying the tagging behaviors in the pool of retrieved nedreen explored by [21], [27]. In [21], tag aggregation altuori
duplicates. Intuitively, if different users label visuakimilar is proposed to rank recommended tags according to tag co-
videos with the same tags, these tags are likely to reflemtcurrence, frequency, and long-tail distribution effée{27],
an objective view of the video content. The premise of thee measure is proposed to determine the ambiguity of a tag
proposed methodology is that there exists at least one nesmt, and new tags that can disambiguate the original tags are
duplicate video in the corpus. Our approach cannot providaggested. In addition to tag recommendation, tag refinemen
tag if no near-duplicate videos can be found in the referenise also explored to prune or re-rank tags. Ontology such
set. as WordNet is employed for pruning semantically irrelevant

We conduct experiments on a large-scale video dataset dags [31]. Tags are refined by re-ranking candidate taggyusin
consider two taskscross-source taggingvhich uses existing random walk [25]. A graph with tags as vertices and tag co-
tags in one search engine to tag videos available in othmrcurrences as edges is constructed to rank tags according
search engines, ancross-time taggingvhich uses existing to their popularity. Recently, a neighbor voting algorithisn
tags collected over years to tag recently uploaded vide@soposed for image retrieval [16], which predicts the retese
Both types of tagging have their own applications. We regaad user-contributed tags. By taking into account the tag and
cross-source tagging as an economic way to propagate vigual correlation, the recent work in [28] formulates tag
metadata among search engines, so as to improve the retricgeommendation as a learning problem.
performance by enriching or exchanging the tags amongSearch-based annotation has also captured numerous re-
different engines. Cross-time tagging, by suggesting tagssearch attention recently. In [15], [26], a corpus of 2.4-mil
newly uploaded videos, can enhance the retrieval of similéwn images are crawled from web for image annotation. A
videos manipulated by various parties which may carry new bigh-dimension indexing scheme (namely Multi-Index) and a
additional message over time along the manipulation historsearch result clustering technique (namely SRC) are peapos

The rest of this paper is organized as follows. Section i [15] for annotation through large-scale search. A more
gives a brief overview of related work. Section Il introdisc sophisticated divide-and-conquer framework which cosrsid
the proposed framework for model-free web video annotaticiext and visual search is later developed in [26] for dateedr
Section 1V outlines the efficient algorithm for near-duplie tagging. In [19], variants of graph reinforcement algarith
search, while section V presents data-driven tag annatatiare proposed for propagating tags from similar documents to
Section VI describes our experimental setup for crossesouiquery videos. These works [15], [19], [26] consider onlytglb
and cross-time tagging, and section VII further details owtsual features for search. In [19], [26], initial textuaykvords
empirical findings. Finally, section VIII concludes thisgea. or labels are further assumed to be available to guarantee

efficient search and effective propagation. While similar i
Il. RELATED WORK spirit, our works in this paper are different from [15], [26]

in several aspects. First, we do not assume the availability

textual keywords to initiate the search for annotationtdad,

The performance of semantic-based image/video seatble search is purely based on visual information. To ensure
depends largely on the quality of the keywords or annotatiaihe robustness of visual search, we consider local features
To bridge the semantic gap between low-level visual featurehich are very different from global features such as color
and semantic concepts, image auto-annotation and objeximent and edge histogram used in [15], [26]. Second, we
recognition have attracted the interest of researchersdent consider scalable search of partial near-duplicate videbesre
years. Many learning models (e.g., [20]) have been proptmsedpatial geometric and temporal consistency informatian ar
automatically assign keywords onto images or image regiomaken into account. The works in [15], [26] which perform
For automatic image annotation, the works can be categbrizmage search by global visual features thus are not directly
into two directions: to learn the conditional probabilityy extensible to our work. Similarly, the work in [19] aims for
to learn the joint probabilities between images and wordstfective propagation of tags from similar videos but sty
Unfortunately, the performances of these statistical Hsodés not considered. Thus, extending the propagation alyuost
are still far from being acceptable for practical applica. to thousands of web videos remains a challenging issue in

A. Tag Annotation



general. Annotating web videos expects timely response. On the
other hand, quality of web search will impact the result of
annotation. Choosing appropriate technique is thus a-#de
between retrieval speed and accuracy. In this paper, wetadop
Near-duplicate videos are identical or approximately iden VK+HE together with WGC and HT for scalable retrieval.
cal videos with similar appearance, but varying in termseof f Both WGC and HT are revised for enhancing search accuracy,
matting, encoding parameters, editing, photometric tiana leading to a much better performance compared to their
viewpoints, and change in camera parameter or setting [28liginal versions.
[33]. Existing works on near-duplicate retrieval can bedully
grouped into two categories. One category demands speedy l1l. ANNOTATION BY SEARCH
response while the other emphasizes more on detection effec ) )
tiveness. The first category aims for rapid retrieval (4j., A. Data-driven Annotation
[32]) and thus global features derived from color and ordina The problem of annotating web videos can be formulated
signature are popularly employed. These approaches dilyhigas finding a group of tags which maximize the conditional
suitable for identifying near identical videos. For videmish  distributionp(¢|V;):
partial duplicate, either spatially or temporally, glofedtures
are known to be less reliable.
The second category addresses the robustness issue

. . . . wﬁgreVi is a web video to be annotated atdis a pool
mainly employing local point features [17]. Local points

(keypoints) are salient local patches detected over eifier of candidate tags. According to Bayesian rule, Eqn. 1 can be

scales. Its effectiveness has been demonstrated by vari(e)ﬁganded to:

works (e.g., [9], [12], [13], [33], [34]), where near-dugdites t* = argmax »_ p(t[Vi)p(Vi|V). (2)
with considerable changes in background, color and light- t %
ing can be _successfully identified. While these a_lpproachesmtuitively for a web video to be annotated,appears more
are robust in gen_eral, the robustness comes with Fhe ?rxéquently in the contexts of similar videos than dissimila
pense of computational cost. To tackle thl_s proble_n_1, asffier ones. Hence, we can approximate Eqn. 2 by generatifigm
approgches have_ been proposed: Loqallty sensitive .ha.ShslPrﬁilar videos instead of the whole video corpus. Dertdtas
g'_ri'll_iazrlsss;r?:ﬁtz(? Icr)]r'[tjl:12n]1’ \tl)V:s”ee dao(::stcg;[_'lotba;zeiségbgﬁlu atl’ée set of similar videos. The problem of annotation becomes
imi gon IS prop 88uivalent to searchin@; and collecting most probable tags
duplicate search in [10]. Another popularly adopted tegbai from ©;. Eqn. 2 can then be reformulated as:

is retrieval by visual keywords (VK) [22], also known as bag-
of-words. Under this technique, keypoints are quantizéd in t* = argmax p(t|©;)p(0;|V;), 3)
groups (dictionary) and each group (an entry of dictionary) t

is viewed as a word. As a result, instead of representim@erep(@”Vi) acts as the search process to identify similar
video content with hundreds to thousands of keypoint fmturvideos, andp(t|®l-) represents the tag generation process.
in high dimension (e.g., 128 dimensions for SIFT descript@ased on the equation, a two-step solution for data-drivelm w
[17]), VK characterizes video content as a histogram of wor@ideo annotation is proposed:

which facilitates fast matching. _ e Scalable searchretrieving a collection of near-duplicate
VK histogram is often a sparse feature vector in high \ideose;, and

dimensional space (e.g., 10,000 words). Thus, inverted file, Tag annotation: mining annotations* from the tags
index is employed for fast matching of visual words [22].  gssociated with video®),.

A major weakness of VK is visual ambiguity caused by
keypoint quantization. Specifically, large (small) diciioy
leads to miss (false) matching. Several approaches have bBe
proposed to address this problem, for instance, Hamming em¥igure 1 illustrates the proposed framework for both cross-
bedding (HE) [7], soft-weighting (SW) [8] and weak geometrisource and cross-time tagging. Two major components in
consistency (WGC) [7]. HE keeps a bit-pattern signature fthis framework are: efficient near-duplicate search and tag
each visual word for pruning false positives due to histograannotation. For offline indexing, videos are first crawleahir
matching, while SW assigns multiple words to keypoints taweb to form a large corpus. These videos are pre-processed
resolve visual ambiguity. WGC is a weighting scheme whidby performing shot boundary detection and then keyframe
re-ranks the quality of histogram matches by checking theielection. Local keypoints are extracted from the keyframe
geometry consistency. VK normally operates on keyframand clustering is carried out to quantize the keypoints into
level. Specifically one keyframe is represented by a histogr a visual dictionary. Each keypoint in the keyframes is then
To match two videos, Hough Transform (HT) [4] is anotheencoded with a visual word in the dictionary, and this forms
technique often employed to measure the degree of mawtbag of words for each keyframe. Inverted file indexing
between videos. HT considers time lags between the matchas Hamming embedding [7] is employed to support scalable
keyframes from two videos. The time lags are utilized as theyframe retrieval with fast similarity evaluation. Sianil

cue to measure video similarity. procedure is applied to the given queries.

B. Near-Duplicate Video Retrieval

t* = argmaxp(t|Vi), )
t

Framework
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Fig. 1. Framework for data-driven web video annotation.

In near-duplicate search, the keyframes which are simileloseness between keyframgsand I;:
to the query keyframes are retrieved from the video corpus
via visual keywords and inverted file (Section IV-A). The m ‘ .
retrieved keyframes are further re-ranked according tdr the sim;j; = 2r frlli) X filj) .
geometric consistency with the query. An efficient evaluati \/221:1 fk(Il-)2 Sy fk(Ij)2
based on weak geometric consistency checking is proposed
(Section IV-B). Finally, the similarity of a video is deteimed
by aggregating the scores of keyframes in the video andTO ensure the coverage of diCtional‘y, the number of words
weakly considering their temporal consistency with thergue IS usually large (e.g.> 10,000). Directly matching two
The video-level similarity aggregation is based on 2D HougdHstograms using Eqn. 4 will not be extremely fast in thisecas
Transform together with a proposed reverse-entropy meashievertheless, since the histogram is normally very spéinse,
(Section IV-C). matching can be efficiently conducted by exploiting stroetu

In tagging, the collection of candidate tags is pooled froHCh as inverted file index [22] which is popularly used in
the set of retrieved videos. An effective measure which coffxt information retrieval. The index stores the keywartage
siders tag frequency, the number of tags, and the similarf§t@tionship, in which each entry (or row) corresponds to a
weight of videos is proposed to rank the tags according tio thk€yword and links to the list of keyframes which contain
relevance (Section V). Finally, the first few tags with highethe word. As a consequence, given a keyframe, the words

retrieved. Cosine similarity is thus only evaluated for asat

of keyframes in the dataset and for those non-zero entries in
the histograms.

We adopt two techniques: 2-level vector quantization (VQ)

To ensure a reliable retrieval, we adopt local keypoint deand Hamming embedding (HE) [7] to further speed up the
scriptors as the features for near-duplicate retrievahdtloe- online retrieval time. Multiple-level VQ allows efficientne
less, the number of keypoints in a keyframe can range fraanding of keypoints to keywords without exhaustive search
hundreds to thousands, while the dimension of descriptordéthe nearest words. To reduce the information loss caused
typically high. Matching keypoints between two keyframeby VQ, HE maintains a binary signature for each keypoint.
becomes extremely slow. Thus, we employ clustering aphe signature is indexed in the inverted file to facilitate th
proach by first quantizing keypoints into a visual dictignarmeasurement of keypoint distances for keypoints falling in
(codebook). Each entry in the dictionary (or centroid of the same visual word. During retrieval, any two matchedalisu
cluster) corresponds to a word. By mapping each keypoimbrds can be pruned if the Hamming distance between their
in a frame to the nearest word, this forms a bag-of-wordsignatures is large. This results in less words being irealv
which is represented in the form of histogram, describirg thin similarity measuring and also the subsequent steps of
visual content of the keyframe. Each bin in the histogrageometric checking. In our implementation, we choose 32-bi
accumulates the number of words found in the keyframe. Mdainary signature. The threshold for Hamming distance isbtet
suring the similarity between two keyframes is then perfdm 15 such that any matched visual words whose distance exceeds
by bin-to-bin matching of their histograms. Denateas the this value will be pruned. In our experiment, querying a
vocabulary size of words, and(I;) as the weight ofkth keyframe against a dataset of 632,498 keyframes only resjuir
bin in keyframel;, we usecosine similarityto measure the 0.08 seconds to complete.

(4)

IV. SCALABLE NEAR-DUPLICATE VIDEO RETRIEVAL
A. Visual Keywords (VK) and Inverted File Indexing



as:
5 =20asp) (6)

where s, s, are the characteristic scales of wongsand g
respectively. The scale values of words are known by the
time when their corresponding keypoints (or local patclags)
detected. For instance, the valug indicates the scale level
which p resides in the Laplacian of Gaussian (or Difference

! o
uf'
ki of Gaussian) pyramid [17], [18]. Similarly, the orientatié

(@) Near-duplicate keyframes. is approximated as:

0=0,—0,, @)

whered,, andd, are the dominant orientations of visual words
p andq estimated during keypoint detection [17].

WGC computesiog(s) and 6 for each matched visual
word between two keyframes. By treating scale and rota-
tion parameters independently, two histograffs and h?,
referring to the scale and orientation consistency resygt
are produced. Each peak in a histogram means one kind of
transformations being performed by a group of words. Igeall

(b) Dissimilar keyframes. a histogram with one or few peaks hints the consistency
Fig. 2. Two pairs of keyframes (left) with similar matchingoses based on of geometry transfo_r_matlon for m_OSt visual words _In the
Eqn. 4. Portion of the matched visual words are highlighteght). keyframes. WGC utilizes the consistency clue to adjust the
similarity of keyframes computed in Eqn. 4 by:

B. Keyframe-level Geometric Consistency Checking
) S T 81Muge (i, 7) = min(mazx(h®), max(h’)) x sim;;.  (8)

The keypoint quantization introduces ambiguity in visual
matching. For example, words from the same bin are al- The similarity is boosted, by a factor corresponding to the
ways matched regardless of their actual distance measuP&@k value in scale or orientation histogram, for keyfrawiesp
by keypoint descriptors. For words from large clusterss thivhich show consistency in geometry transformation.
could cause excessive number of false matches. Thus geo?) Enhanced Weak Geometry Consistency (E-WGC): The
metric consistency checking is a post-processing stepngimimerit of WGC lies in its simplicity and thus efficiency in
to examine the Coherency of matches between two Setstl@ﬂSformation estimation. Nevertheless, such estimasiomot
visual words. Figure 2 shows an example that two pairs glways reliable. The main reason for unreliable estimation
keyframes have similar matching scores as computed by E'@q_due to the fact that the characteristic scale and dominant
4. However, visually the keyframes in Figure 2(b) are Ve@rientation estimated from keypoint detection are not gwa
different. Ideally, by recovering their underlying geomet discriminative enough. For example, although DoG (Differ-
transformation from the word matches as shown in Figure @1ce of Gaussian) detector adopts 5 levels of Gaussian yram
the dissimilar keyframes can be pruned. for keypoint localization, most points are detected at lleve

1) Weak Geometry Consistency (WGC): Recovery of 1. As a consequence, the scale histogram always has a peak
transformation is often done by RANSAC [18]. However, sucRorresponding to level 1. _ _
estimation is always costly and not appropriate when large"e propose the enhancement of WGC by also including
number of keyframes are required to be investigated. WGC [fgnslation information. Combining equations 5, 6 and 7, we
is a recently proposed technique which exploits the weak Bfve the WGC estimation as:
partial geometric consistency without explicitly estimgtthe o B cosf —sinf z
transformation by checking the matches from one keyframe { ] =sx { yp ] . (9)

. . p

to another. Given two matched visual worgéz,,y,) and
q(zq,yq) from two keyframes respectively, WGC estimates Deriving from equations 5 and 9, the translatiorof the

Yq sinf  cosf

the transformation fronp to q as: visual wordq can be efficiently estimated by
Tq | _ gy Cf)s9 —sinf o | %p n T, G T = \/@; —20)2 + (Jg — yg)?- (10)
Yq sind cosd Yp T,

Ideally, the matched visual words which follow consistent
where (z,,y,) and (x4, y,) are the 2D spatial positions @f transformation should have similar values af and thusr
andq in x-y coordinate. In Eqn. 5, there are three parameteran be used to directly adjust the keyframe similarity as in
to be estimated: the scaling factgrthe rotation parametér Eqn. 8. There are two advantages with this simple scheme.
and the translatiofi’,, 7,,]*. In WGC, only the parametess First, the inclusion of translation information providesgher
and @ are estimated. For efficiency, the scale and rotation cgagometric clue in addition to scale and rotation. Second,
be derived directly from the local patchespfindq without Eqn. 10 has jointly integrated the clues from scale, romatio
the explicit estimation of Eqn. 5. The scaés approximated and translation, thus generating one histogram & enough



for similarity re-ranking. In addition, Eqn. 10 can be tally
computed without incurring additional computational cost
Since Egn. 10 is an enhanced version of equations 6 and 7,
we name our approadnhancedVGC, or E-WGC in short. 65 A4S 20 1234 S e
In E-WGC, only one histogram is generated based on the
values of translation. Similar to WGC, histogram peak is
located to re-rank the keyframe similarity. For robustnéiss
peak is smoothed by considering the moving average of two

Num. of matches
-
o = 3
\ I

Num. of matches

-2z -7 0 T 2
neighboring bins. As a result, the value of peak is computed o
as. (a) WGC histograms for Fig.2(a).
> iy |hyl
Tpeak = [l + [hiza| + [hia| = 2% =——, (1) E
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whereh; is the bin with peak value, anah is the number of 016 T
histogram bins. Ultimately, the keyframe is re-ranked as: ) log®)

Simewgc(iaj) = (%ﬁ)vXSimija (12)
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whereT,qqi is normalized byM,,;, which denotes the number e . 0 . "
of matched visual words in two keyframes. We amplify the 3

ratio of 7peqr t0 M, Dy a factor ofy so as to increase the (b) WGC histograms for Fig.2(b).
gap between similar and dissimilar keyframes. The fagt 018
a parameter empirically set equal to 3, which will not affect 0.15

the re-ranking result. We include this factor for the pugpos g 0121 HHH

]
of selecting only few most similar videos for tagging, which Eﬁﬁ?
will be further elaborated in Section V. 003 |
Figure 3 compares WGC and E-WGC. Figures 3(a)-(b) 07
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show the scale and rotation histograms of WGC from the .

matches of visual words in Figures 2(a) and 2(b) respegtivel (c) E-WGC histogram for Fig.2(a).
Figures 3(c)-(d) show the translation histogramsE-WGC in o8

Figure 2. For WGC, despite that the keyframes in Figure 2(a) ‘“ﬂ

are the rotated version of one another, there are two peaks g

found in the difference of histogram of 3(a). Similarly, by im

observing the histograms in Figure 3(b) computed from the 0.03

keyframes in Figure 2(b), there are apparent peaks in both 0 0 s 10 15 200 2% 00 a0 o0 250
histograms, though the keyframes in Figure 2(b) are diszimi .

As a result, the re-ranking scheme in Eqn. 8 incorrectly tsos (d) E-WGC histogram for Fig.2(b).
their similarity in this case. In contrast, as seen in FiglB¢)-

; ; _ ig. 3. Comparison between WGC and E-WGC: (a) and (b) aredhle s
(d)’ the translation hIStOgram of E-WGC shows an appare;rﬁ?d rotation histograms of WGC; (c) and (d) are the tramsiakiistograms

peak for the _near-_duplicate pair in Fi_gu_re_Z(a), while the_rf@r E-WGC. For WGC, there are obvious peaks for both neaticatp
is no peak with high score for the dissimilar keyframes iand dissimilar keyframes. In E-WGC, an apparent peak is doanly in

Figure 2(b) The re-ranking formula in Eqn. 12 therefor?e histogram of near-duplicate keyframes. Therefore, G8\is capable of
T . - istinguishing near-duplicate from dissimilar keyframes
boosts the similarity of Figure 2(a) but not Figure 2(b).

Compared to WGC, E-WGC can more effectively distinguisby weakly considering their temporal consistency [4]. HT

near-duplicates from dissimilar keyframes. is basically a voting scheme which accumulates scores from
matches with similar time lags. Given a keyframe paiand
C. Video-Level Similarity Aggregation I; with similarity scoresimeqyq.(i,j) as computed in Eqn. 12

L L . and temporally located at timg and¢, of videosV, andQ
Similarity aggregation involves measuring the Sequenfeqnectively, the time lag is computed as:
similarity for videos where their keyframes are fully or par ' '

tially matched to the keyframes of a query video. Given a Bet o 0i; =t1 — to. (13)
keyframe pairs from a vide®) and a quenQ, the similarity

betweenV, andQ can be counted by aggregating the number HT aggregates the similarity score as a result of one
of keyframe matches. Such measure, nevertheless, doeskgyframe match into a 2-dimensional histogram, with one
consider temporal consistency and the noisy matches candjgension as the video ID and the other dimension as the time
easily included in similarity counting. Hough TransformTH ag. In this histogram, video ID is a unique integer assigned

is a technique aiming to aggregate the keyframe matct€s2 Vvideo, and the range of time lag is quantized into bins
by a bandwidth oby. Each keyframe matching paly and/;

INote that the histograms are normalized . contributes a score Gfim., 4. (4, j) to the bin[k, b], wherek is



. segmentS, from V, and another segmeny, from Q. Let N,
' - be the number of keyframes ifi,, and; be the number of
_ ' keyframes fromS, with matches to théth keyframe ofS,,.
enfromA - Pachfrom B We employ entropy to measure the associative mapping from
0231\ 0.253 Sq 108, as
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Fig. 4. Due to quantification error of visual words, a keyfeamay be WhereZ = Zi\jl n; is the total number of keyframe matches
matched to multiple keyframes in another video. The numasssciated with petween videod), andQ. The value of entropy ranges within
tehdegf}]sa?gﬁetgewi':g!amy scores computed with Eqn. 4, angatehes denote 1) 1) The measure of entropy depends upon the granularity of
matches from one video to another. Matching which exhibits
the video ID ofV}, and b=L5(;‘—(*jJ. Consequently, a peak in theone-to-one correspondence will receive the highest entrop
histogram, in the form of a triplék, b, scoreysp], corresponds value of 1. In contrast, for the cases of one-to-many or many-
to an accumulated scorecorey, = Zi_’j Stmewge(i,j) Of to-one matching, the entropy value will be low. A specialecas
keyframes inV;, which are temporally aligned with the queryhappens when only one keyframe $j has matches, and the
videoQ (i.e., b=L5g[jJ). In other words, peaks in the histogrankeyframe matches to all the keyframesSp. In this case, the
hint the video segments which are similar @ Detecting value of entropy will be 0. Since the definition of entropyéer
the peaks is basically equivalent to finding the partial nheds different from the conventional definition where a valde o
duplicates ofQ. 1 indicates uncertainty while a value of 0 indicates confiden
Let H[k, b] be the 2D Hough histogram, whete< k¥ < n, match, we name the entropy measure in Eqn. 1Rasgerse-
andn is the number of videos having the matched keyfram&ntropy (RE)measure.
with query Q. HT measures the similarity of videl, to Q The measure of RE is not symmetric, meaning that the
by matches forS, — S, will have a different RE value from
Simn(Ve, Q) = mazy (H[k, b]), (14) that of S, — S;. Thus the final value of RE is defined as:

In other words, the similarity of two videos is determined by RE(Vi, Q) = min(RE(Sq = Sv), RE(Sy = 5y)). (16)
the maximum aggregated similarity score of keyframes from We use the RE measure in Egn. 16 to estimate the similarity
both videos which are consistently matched along the teatpobetween videod’, andQ as following:
dimension. Simye(Vi, Q)
1) Reverse-Entropy Ranking: While Hough Transform is . 5
efficient to implement, it has the deficiency that the influenc — { Sl,mht(vk’Q) x RlE(Vk’ Q)° i RE(V’“’Q) #0
of noisy matches is not carefully tackled. As indicated ih [4 Simn(Vi, @) X 77 Otherwise
the similarity aggregation is often mixed with consideeabl . L (17)
portion of false positive matches. The reasons are maindy du The original _S|m|Iar|ty s de"a'E‘ed by the_ square of RE t_o
to two practical concerns. First, shot boundary detectamoit Impose a hea\{ler penalize on videos having hoisy matching
always perfect. False detection can cause excessive nurhberegments. Notice that Whgn RE (_equals to 0, !t indicates that
shots (and keyframes) which are similar to each other with@ly 0ne keyframe of a video (eithép or V;) is matched
a video. As a consequence, this often results in one keyframeke}”‘rames Ofl another V|deo._ In th|s_ case, the similarity
from a video being matched to several keyframes in anotHérwe'_ghted byﬁ so as to avoid the similarity score from
video or vice versa. Second, the imprecise matching of yis(ffopping abruptly v to zero.
words due to quantization error, as well as E-WGC which only
weakly considers the geometric transformation, also thtoes D. Time and Space Complexity
random false matches. These practical concerns jointlyemak While the framework involves a variety of components,
the similarity aggregation in HT lack of robustness. Figdre the retrieval speed is highly efficient mainly due to the use
illustrates an example where the second keyframe from @vidsf inverted file which is essentially a hashing technique.
is matched to almost all the keyframes of another video. There are several factors which govern the time complexity o
causes the video pair to have high aggregated score acgorditrieval. These include the size of visual wordg,(number
to Eqgn. 14. of keyframes per queryn{), and number of keypoints per
To solve this problem, we revise Eqn. 14 by taking intkeyframe ).
account the granularity of matching. The intuitive ideahatt ~ Mapping a keypoint to a word and eventually retrieving
a keyframe which matches to multiple keyframes in anoth#re list of keyframes containing the word tak€gw) time.
video is given less priority when determining video sinithar The speed can be improved ®(log(w)) with the use of
Thus, the aim is to lower the scores of video segments whiatulti-layer vector quantization. Thus, mapping the keyp®i
include excessive matching. Let the 2D Hough binb] as from an entire query video to visual words for retrieval sost
the peak which gives rise to the similarity between vidéps O(mplog(w)). The size of candidate videos retained for E-
andQ as in Egn. 14, and assume that the bin corresponds t&V&C and HT is query dependent. Assuming that there are
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n keyframes being retrieved and each keyframe containswheret f;;, is a binary value of 0 or 1, denoting the absence or
keypoints, in the worst case, E-WGC will tak&(mnpq) to presence of tag; in Vj, |Vi| is the number of tags witf,
verify every matching point, and HT will tak&©(mn) to andSim,..(Vk, q) is the video-level similarity. Notice that the
check temporal alignment. Summing up all the componenis)portance of a tag is also reflected by the similarity betwee
the complexity isO(mplog(w)) + O(mnpq) + O(mn). Let Q and V. In other words, the tags from videos which are
K be the total number of keyframes indexed in dataset. fally duplicate is expected to carry higher weights thanstho
practice,m,n << K, and the average number of keypointérom videos which are partially duplicate @. Ultimately, the
(p and q) is typically about 260. Due to the use of HE, thescore of tags determines the rank list of tags recommended to
number of keypoints to be verified by E-WGC can be reducdlde queryQ for annotation. Notice that the ability to rank
by another 70-85%. In brief, the time complexity is sub-iine tags according to their relevancy and popularity can indeed
to the number of keyframes and keypoints in a dataset, andaifeviate the adverse effect introduced by noisy user-tAgs
practice, the retrieval speed can be very efficient. a result, the rank list provides a more complete tag list,iand

In terms of space complexity, each visual word in thaddition, the subjective tags are pushed to the bottom bf lis
inverted file stores the keyframe ID (4 bytes), spatial lmrat
of keypoint (4 bytes), scale (2 bytes), dominant orientatio VI. EXPERIMENT SETUP
(2 bytes), and Hamming signature (4 bytes). Thus, the space
is linear to the number of keypoints to be indexed. For ofit- Datasets
dataset of 144G bytes and 1,040 hours of videos, the size offo verify the robustness, effectiveness and efficiency ef th

inverted file is 2.45G. proposed works for web video annotation, two web video
datasetsS_SOURCE andDS_TIME ) are collected to eval-
V. TAG ANNOTATION ON WEB VIDEOS uate the performance. Datade_SOURCE was collected

Once the near-duplicate or partial near-duplicate viddos i§ November, 200?' which includes videos from YouTube,
a given query are retrieved, a pool of user tags associaf@gogle, and Yahoo! video search engines. Our aim is to anno-

with these videos can be acquired. Tags associated witbsigfpte the Google and _Yahoo!_videos using YouTube resource.
are usually in the form of a freely-chosen and short list e selected 24 queries designed to retrieve the most viewed

keywords. These keywords might give descriptions to vidéd'd top favorite videos from YouTube. Each text query was
content, with additional context information. Since mosers SSUed to YouTube, Google video, and Yahoo! video separatel
are lazy and not expected to spend much time to tag vide§8d We collected all retrieved videos as our B®URCE.

it is expected the tags will be incomplete, diverse and withhis collectlon_con5|sts of 12,790 videos, WhICh is the same
redundant and noisy information. Spelling errors and specfat@set used in [29], [30]. To test the scalability of near-

characters may appear frequently. The mission of dataariduplicate detection, we further downloaded another 5,000
annotation is to select a small number of representative tagd€0s from YouTube using different sets of queries. Thel fina
to annotate the un-tagged videos. ataset eventually consists of 1,040 hours of videos. We use

A scenario we assume here is that tags commonly given byt28 * 462 videos from Google and Yahoo! respectively
users are more likely related to the actual content of vide@ the testing queries because they have no associated tags.
and less likely to be spam. Generally speaking, these tags hahe query |nf0rma.t|0n qnd the number of near-duplicates in
higher chance of being re-used for videos of similar contefdS-SOURCE are listed in Table 1. The 3rd column shows the
In other words, tag frequency gives clue to the relevance 3¢mPer of videos from YouTube, while the number of web
a tag to videos. In addition, the number of tags given IO(\_ﬂdeos from Google and Ya_thoo! is listed in the 4th column.
video has several implications. On the positive side, aelarg€ 5th and 6th columns list the number and percentage of
number of tags hints a diverse video content. On the downsi@&r-duplicates among which videos from Google and Yahoo!
these tags may simply be a verbose description of a vid&@" find the correspondlng_ near-duplicates in the YouTupe.
content when there are few or no tags which can uniquéé?r example, 85 out of 93 videos from Google and Yahoo! in
describe the video content. In contrast, for a video taggied wQUery 19 (“Sony Bravia”) have corresponding near-dupécat
few keywords, it is reasonable to expect that these keyworgd€os in YouTube. On average, there are 38.6% videos from
are given based on impression or intuition directly obselva ©00gle and Yahoo! having counterparts in YouTube.
from the video. Such tags are more likely related to the mainS_'n_Ce the distribution of video data_evolves.as the t|_me goes
theme and content of videos. by, it is expected that the uploaded videos might deviatefro

Based on this intuition, we propose a measure to ratie origi_na_l ones, and_ the number of near-duplicate videos
the relevance of tags based on tag frequency, the numBBpuld diminish. To verify the robustness of proposed mitho

of tags associated to a video, and the video similarity. LE@t@setDS_TIME was collected in December 2008, using
©; = Vi,Vs, ...V, be the set ofm near-duplicate videos the same queries as in DSOURCE but crawled at different

being retrieved anad\ = ¢1, £, ... be the set of tags associatedMe- The objective is to annotate the newly added videos
with videos in©,. The relevancy of a tag; to queryQ is USing previous data. Table Il shows the details. For each

defined as: topic, we retrieve top 500 videos returned by YouTube search
m engine. Among these videos, the ones having time overlgppin
score(t;) = Z tfik x Simye(Vir, Q), (18) with videos in the_ first datase_t DSOURCE are removed_.
— V| In Table Il, the third column lists the number of videos in



TABLE | TABLE Il

THE INFORMATION OF DATASETDS_SOURCE. ANNOTATING VIDEOS OF THE INFORMATION OF DATASETDS_TIME. ANNOTATING NEWLY
GOOGLE AND YAHOO!(G+Y) BY USING YOUTUBE (YT) CRAWLED DATASETDS_TIME (NEW) BY PREVIOUSLY CRAWLED
ID Topic YT G+Y ND % DS_SOURCE (OLD)
1 The lion sleep tomight 664 128 61  47.7 ID__ Topic OLD NEW ND %
2 Evolution of dance 354 129 29 225 1 The lion sleep tonight 792 395 82 20.8
3 Fold shirt 337 99 61 61.6 2 Evolution of dance 483 414 9 2.2
4  Cat massage 293 51 22 43.1 3 Fold shirt 436 355 35 9.9
5 Ok go here it goes again 263 133 17 12.8 4 Cat massage 344 433 10 2.3
6 Urban ninja 682 89 40 44.9 5 Ok go here it goes again 396 255 13 5.1
7 Real life Simpsons 249 116 40 34.5 6 Urban ninja 771 337 53 15.7
8 Free hugs 489 50 32 64 7 Real life Simpsons 365 304 20 6.6
9  Where the hell is Matt 196 39 9 23.1 8 Free hugs 539 324 0 0.0
10 U2 and green day 277 39 8 40.0 9 Where the hell is Matt 235 437 7 1.6
11  Little superstar 229 148 18 12.2 10 U2 and green day 297 328 54 16.5
12 Napoleon dynamite 769 112 33 29.5 11  Little superstar 377 397 0 0.0
13 | will survive Jesus 376 40 30 75.0 12  Napoleon dynamite 881 326 47 14.4
14  Ronaldinho ping pong 79 28 11 39.3 13 | will survive Jesus 416 326 240 73.6
15 White and Nerdy 1495 276 70 25.4 14  Ronaldinho ping pong 107 160 61 38.1
16  Korean karaoke 180 25 16 64.0 15  White and Nerdy 1771 334 76 22.8
Panic at the disco | write 16  Korean karaoke 205 350 11 3.1
1 sins not tragedies 609 38 9 23.7 17 Panic at the disco | write 647 375 48 1238
18 Bus uncle 453 35 23 65.7 sins not tragedies )
19  Sony Bravia 473 93 85 91.4 18 Bus uncle 488 250 0 0.0
20 Changes Tupac 178 16 9 56.3 19 Sony Bravia 566 392 65 16.6
21  Afternoon delight 412 37 10 0.27 20 Changes Tupac 194 446 75 16.8
22 Numa Gary 360 62 34 54.8 21  Afternoon delight 449 426 37 8.7
23  Shakira hips don't lie 1146 176 42 23.9 22 Numa Gary 422 375 89 23.7
24 India driving 220 67 13 19.4 23  Shakira hips don't lie 1322 342 92 26.9
- Others* 5000 - - - 24 India driving 287 378 8 2.1
Total 15720 1870 722 38.6% - Othersr 5000 - - -

Total 17790 8459 1141 13.5%

* Others are videos randomly downloaded in 2009 using gsedifferent

from the 24 topics. * Others are videos randomly downloaded in 2009 using gsediferent
from the 24 topics.

the DS SOURCE dataset, while the fourth shows the number

of web videos newly collected. The 5th and 6th columrublicly available toolkit CLUTO [11] is employed to cluste
demonstrate the number and percentage of newly crawlégal points into 20,000 clusters. To compare the perfocean
videos that can find the near-duplicate in the_S®URCE We also extract the color moment feature. Each keyframe
dataset. Query “I will survive Jesus” still has a high per{S depicted with the first three color moments (i.e., mean,
centage of near-duplicates (73.3%) for videos uploadent frstandard deviation, and skewness) extracted in Lab coaresp
December 2006 to December 2008. Based on our statistics, @8 5> 5 grid partitions, which results in a 225 dimensional
average percentage of near-duplicate videos is 13.5%,hwhfgature vector.
is smaller than the percentage in DURCE. Currently ~Due to the noisy user-supplied tag information, special
a portion of fully duplicate videos has been removed b§haracters (e.g., ?, !, :, #, |) are first removed. Then the
YouTube, and there is a two year interval between the§tndard Porter stemming is applied to stem the text words.
dataset collections. The topics may become unpopular and fter a serial of data preprocessing (such as word stemming,
contents can deviate from the original ones. These are @Recial character removal, Chinese word segmentationsand
reasons for a relatively lower percentage of near-duglicaton), there are 14,218 unique tag words.
compared to DSSOURCE.

According to our statistics, among the 722 (1,141) neat performance Metrics
duplicates used as testing queries in_BOURCE (TIME),
there are approximately 35.9% (27.2%) having at least one
exact duplicate in the reference set. Another 63.1% (72.8% th, two assessors are asl_<ed to watch the query 3”0' then
of queries have near-duplicates due to various forms oinegit owse through the videos in datasets to manually find the

effects or changes in camera viewpoint. Among them SorﬁgrrgsponQing negr-duplicate vi.deos. The labeling is diase
videos are either trimmed or inserted with new materiaf visual impression that the videos which are transformed

resulting in partial near-duplicates. vers_,ions of one another, showing_ changes either b_ecquse of
editing operations or camera settings or any combination of

them, are regarded as near-duplicates. Partial nearedtmpli

videos, with at least one shot being near-duplicate, are als

Shot boundaries are detected and each shot is represeimeliided as the ground-truth.

by a keyframe. Totally, there are 398,009 keyframes in We use recall, precision and accuracy to evaluate the

DS _SOURCE. Local keypoints are detected by Harris-Laplacetrieval performance. These measures examine the ability

and described by SIFT [17]. For learning visual dictionarg, to retrieve all relevant matches (recall), to minimize dals

collect 742,139 local features from 2,000 keyframes whigbositives (precision), and to signal alarm if the query iseio

are randomly selected from the DSOURCE dataset. The (accuracy). Recall refers to the percentage of near-catglic

1) Near-Duplicate Video Retrievalto generate the ground-

B. Pre-Processing



TABLE Il
PERFORMANCECOMPARISON OFNEAR-DUPLICATE VIDEO RETRIEVAL ACROSSSOURCES ONDS_SOURCE.

Precision Recall
Topic LSH-E VK VK+ VK++ VK# LSH-E VK VK+ VK++ VK#
1 0.989 0.995 0.915 0.983 0.999 0.900 0.917 0.852 0.986 0.986
0.927 0.403 0.269 0.861 0.987 0.354 0.594 0.302 0.969 0.906
3 0.926 0.992 0.929 0.992 0.997 0.803 0.869 0.896 0.973 0.940
4 1.000 1.000 0.999 1.000 1.000|| 0.952 0.979 1.000 1.000 1.000
5 0.987 0.847 0.735 0.988 0.993 0.861 0.937 0.949 0.962 0.987
6 0.044 0.865 0.629 0.995 0.998 0.729 0.940 0.977 0.985 0.992
7 0.980 0.983 0.824 0.999 1.000 0.856 0.949 0.966 1.000 1.000
8 0.050 0.880 0.683 0.981 0.994 0.612 0.633 0.633 0.796 0.755
9 0.213 0.136 0.278 0.936 0.978 0.923 0.962 0.962 0.962 0.962
10 0.113 0.68 0.341 0.874 0.917 0.646 0.954 0.969 0.969 0.985
11 0.137 0.991 1.000 0.982 1.000 0.609 0.652 0.841 0.986 1.000
12 1.000 0.876 0.958 0.995 0.994| 0.490 0.903 0.916 0.961 0.968
13 0.998 1.000 0.999 1.000 1.000(| 0.723 0.992 0.863 1.000 1.000
14 0.222 0.172 0.390 0.969 0.973 0.019 0.925 0.925 0.925 1.000
15 0.525 0.903 0.865 0.997 0.999 0.872 0.964 0.968 0.974 0.971
16 0.110 0.887 0.965 0.993 0.993|| 0.827 0.865 0.923 0.962 1.000
17 0.263 0.937 0.984 0.935 0.941|| 0.310 0.957 0.933 0.995 1.000
18 0.060 0.373 0.494 0.707 0.926 0.412 0.897 0.779 0.956 1.000
19 0.035 0.925 0.875 0.991 0.995 0.218 0.979 0.982 0.994 0.991
20 0.979 0.539 0.428 0.928 0.998 0.625 0.900 0.875 0.975 0.975
21 0.031 0.684 0.435 0.978 0.992 0.382 0.985 1.000 1.000 1.000
22 0.217 0.554 0.264 0.900 0.977 0.538 0.670 0.681 0.901 0.901
23 0.198 0.772 0.817 0.972 0.984 0.625 0.701 0.669 0.982 0.985
24 0.380 0.151 0.230 0.977 1.000 0.651 0.721 0.884 0.930 0.884
Average [[ 0.474 0731 0.679 0.956 0.985 ] 0.622 0.869 0.864 0.964 0.966

Success at Rank K (S@KS@K measures the proba-
bility of finding a good descriptive tag among the thp
recommended tags.

Precision at Rank K (P@KP@K measures the propor-
tion of retrieved tags that are relevant at rdak

videos being correctly retrieved compared to the grounthitr
Precision means the percentage of correctly retrievedogide
among the returned videos. Accuracy refers to the percentag
of queries which are correctly judged as having near-dafge .
to a target dataset.

2) Tag Annotation:To evaluate the annotation performance,
one way is to directly compare the tags generated by the VIl. EVALUATION

proposed approach with the original ones supplied by Usegs. performance of Near-duplicate Video Retrieval
Nonetheless, those tags tend to be noisy, incomplete an

ambiguous. Simply treating user tags as ground truth is ntﬂii‘ C”t'cgl s}_eptm qéodel}fre?hannotatlo.r(lj pros:r(re]ss IS ;0 locat
completely objective. Therefore, we adopt manual labeling € near-auplicate videos for the query video. The perioeea
% near-duplicate video retrieval directly affects the lifyiaf

tags and titles of near-duplicate videos. Then, for eackaid recommended tags. As a result, the effectiveness of ratriev
' ' js one of the major concerns.

the keywords are recommended, one after another from R th f f tollowi hes:
pool, to the assessors. The assessors determine whethe ?{e compare he periormance of following approaches.
i SH-E: locality sensitive hashing embedding on color

accept the keywords as tags, and have option to add new tags : )
after browsing the video and suggest tags from the pool. T ment, 2) VK: visual keyword search together with inverted
I

. : le index and 2D HT for video similarity measure, 3) VK+ [7]:
evaluation is conducted by comparing the tagisesuggested . ) .
by the proposed approach in Section V and the ground tr ual keyword search with WGC checking and 2D HT, 4)

T¢. The overlap betweefs and 7 is then used to examine H$++:(;/IES>U?/|K|;e-y\\7|2:i se_iar:cnglusl(E-W(ls_g;P:Eepklng andt|2D
the tag quality. In other words, a tag is regarded corredtaf t* ' and 5) : Wi ranking. "= 1S arecenty

tag also appears in the ground truth. Similar to previouskworIoroloosecl technique in [3] for scalable video search. Using

on image annotation [21], [23], we adopt three measures 'a%H the technique embeds c.ololr moment .|nto a long and
the performance metrics, which evaluate the performaree fr sparse feature vector. Inverted file is then applied to sajipe

different aspects: fast retrieval of long \_/ecto_rs. We use the same implememat_i
provided by [3]. Cosine distance measure is used for forming

« Mean Reciprocal Rank (MRRMRR measures the re-the embedded space. The corresponding parameters: number
ciprocal of the position in the ranking where the firsbf hash functions in a histogram (B=10), folding parameter
relevant tag is returned by the system, averaged over @=4), and number of histogram (N=18) are optimized and
the videos. This measure provides insight on the abiliget according to [3]. The bin widtfy in 2D Hough Transform
of the system to return a relevant tag at the top of the tested with different settings (from 150 to 240). Due te th
ranking. The value of MRR is within the range of [0, 1]space limitation, details will not be presented in this pape
A higher score indicates a better performance. A vall&le use the best possible setting of bin width which equals to
of 1 indicates that all top one ranked tags are relevant200 for all approaches.
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TABLE IV
PERFORMANCECOMPARISON OFNEAR-DUPLICATEVIDEO RETRIEVAL ACROSSTIME ON DS _TIME.

Precision Recall
Topic LSH-E VK VK+ VK++ VK# LSH-E VK VK+ VK++ VK#
1 0.934 0.131 0.177 0.996 0.999 0.879 0.803 0.797 0.953 0.962

0.241 0.845 0.403 0.890 0.991 0.084 0.864 0.876 0.918 0.936
3 0.732 0936 0512 0.971 0.996 0.751 0.852 0.975 0.911 0.928
4 1.000 0.996 0.992 0.995 0.997| 0.470 0.929 0.958 0.958 0.958
5 0.205 0.343 0.368 0.946 0.984 0.092 0.956 0.981 0.955 0.977
6 0.070 0.468 0.098 0.887 0.946 0.833 0.908 0.954 0.937 0.943
7 0.978 0.759 0.620 0.977 0.995 0.370 0.851 0.856 0.978 0.983
8

9 0.002 0.073 0.155 0.966 0.956|| 0.059 0.912 0.971 0.912 0.912

10 0.554 0.553 0.241 0.975 0.984 0.678 0.920 0.862 0.828 0.805
11 - - - - - - - - - -

12 0.721 0.689 0.700 0.993 0.994 0.404 0.858 0.896 0.896 0.869
13 0.339 0937 0.915 1.000 1.000|| 0.699 0.985 0.985 0.992 0.995
14 0.006 0.142 0.081 0.984 0.99 0.075 1.000 0.988 0.975 0.950
15 0.732 0.872 0.652 0.977 0.998 0.884 0.959 0.979 0.980 0.980
16 0.058 0.172 0.124 0.941 0.974 0.636 0.886 0.955 0.955 0.955
17 0.675 0.429 0.369 0.978 0.994 0.341 0.948 0.943 0.983 0.983
18 - - - - - - - - - -

19 0.158 0.600 0.380 0.987 0.994 0.807 0.890 0.976 0.968 0.971
20 0.380 0.262 0.078 0.913 0.986 0.641 0.946 0.967 0.957 0.946
21 0.076  0.677 0.651 0.999 0.999(| 0.636 0.795 0.727 0.841 0.852
22 0.135 0.131 0.053 0.900 0.926 0.426  0.792 0.802 0.911 0.901
23 0.251 0.740 0.689 0.992 0.994 0.436  0.870 0.949 0.952 0.957
24 0.391 0.903 0.743 0.956 0.966 0.960 0.920 0.960 0.960 0.960

Average [[ 0411 0555 0.429 0.963 0.984 [ 0.531 0.897 0.922 0.939 0.939

. . TABLE V
To decide whether a video should be labeled as near- wmap perrorRMANCE OFNEAR-DUPLICATE VIDEO RETRIEVAL

duplicate, we adopt thresholding technique for all fiveedst
approaches. In the experiment, the best possible threshold Dataset [[ LSH-E VK VK+ VK++ VK#
are separately identified for each approach on a subset of Cross Sourcejl 0514 0690 0684  0.849 0.869
DS_SOURCE dataset. The thresholds are then applied to all Cross Time || 0.290 0463 0519 0721 0.762
experiments on DSSOURCE and DSTIME datasets.

out, which reduces the possibility of inducing noises irgg t
Table 1ll and IV list the performance of near-duplicatannotation.

video retrieval in DSSOURCE and DSTIME datasets, re-  Note that the performances of LSH-E, VK and VK+ fluc-
spectively. The experiments are conducted for queries wiillate across 24 topics. For topics containing large number
near-duplicates. Therefore, 722 and 1,141 queries aemtémt of exact duplicates (or copies), these approaches normally
DS _SOURCE and DSTIME, respectively. Overall, VK based exhibit satisfactory performance. Such topics include fll w
approaches show significantly better performance than ESHsurvive Jesus” (topic-13). On the other hand, for topicsirigyv
LSH-E is based on color feature, which lacks discriminativgifferent versions of near-duplicates as a result of variedit-
power as the dataset becomes larger. Local feature ising effects, the performances are usually unsatisfactone
more favorable choice than global features. Visual keywoekample is “Bus uncle” (topic-18) where the original versio
based search generally returns a high recall of near-daiplicis captured by a cell phone. Due to different edited versams
keyframes but mixed with a large portion of false matchewell as the low visual quality of original video, the retrav
Although geometric consistency constraint WGC is employedsults are generally poor. Nevertheless, for VK++ and VK#,
by VK+, there is no obvious improvement over VK. Ordue to the consideration of robustness in geometric chgckin
the contrary, E-WGC significantly enhances the performangad video-level similarity aggregation, their performesare
of VK++ and VK#, especially for precision. Compared taonsistently good for nearly all the tested topics.
VK+, the improvement of VK++ in terms of precision is To confirm the retrieval performance of five approaches, we
over 41% and 124% for DSSOURCE and DSTIME, re- also measure the average precision (AP) of each query topic.
spectively. In addition to scale and rotation transforms, EBAP is a measure indicating the area under a precision-recall
WGC also integrates the translation transform, which is durve. We measure AP of up to top-500 retrieved items. The
more discriminative measure. Only matches following th@ean AP (MAP) of the five approaches is listed in Table V.
same linear transformation will be kept, which filters oubverall, VK# and VK++ performs significantly better than
large amount of false positives while maintaining a higbther approaches.
recall. Hough Transform (HT) weakly considers the temporal
consistency. Unfortunately, its effectiveness can bectdfbby
noisy matches. With the assistance of reverse entropy (RE),
the performance is further boosted. VK# achieves the bestWe evaluate the quality of tags returned for the queries
performance. Noisy keyframe matches are effectively pdunevhich have near-duplicates in the reference set. Since the

Performance of Tag Annotation
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: . . TABLE VI
average number of user-supplied tags for each video is droun PERFORMANCE COMPARISON FORTAG ANNOTATION

4.6 in the dataset, we evaluate the performance of the top
5 tags in the experiment. In order to evaluate the effect

; snilar ; Cross Source Cross Time
of the video similarity to tag r.ecommenda'uon_, we alsq test Nsthod MRR  S@5 P@SI[MRR S@5 PG5
the performance of VK# but ignoring the weight of videa
similarity in Eq_n. 18. That is, the yideo si_milarity score is LSHE 8:2(6)(1) 8:8;3 8:%’}1 8:221 8:28; 8:232
treated as a binary measure. It will contribute 1 if a near- k4 0.868 0.933 0.714| 0826 0911 0.674
duplicate video is identified, otherwise it is 0. Therefdies VK++ 0.961 0.973 0.783| 0.956 0.983 0.818
approaches is called VK# (Binary). The performance of crossVK# (Binary) || 0.901 0.968 0.71§| 0.891 0.949 0.763
source and cross-time annotation is measured according to VK# 0962 0985 0.789) 0959 0.988 0.815
MRR, S@5 and P@5, which is shown in Table VI. Overall, the__Oracle ][ 0.967 0.991 0.81(] 0.990 1.000 0.861
performance of near-duplicate video retrieval directlieets
the quality of tag annotation. Theoretically, retrievingna Video Top 5 Tag Annotation

near-duplicate videos can supply more information for te t

annotation. In practice, as long as a subset of represemntati £ BBl simpson real life intro funny
near-duplicate videos with quality tags are retrievedlréady
provides the most essential tags for recommendation. As ] ) )
indicated by MRR, the suggested tags at the top ranking are ﬁ_ nerdy white al weird yankovic
meaningful for all approaches. Therefore, the performance
difference among various approaches is not as apparen¢as th
results of near-duplicate retrieval.

Both VK and VK+ show less satisfactory performances
across two datasets. Among the retrieved videos, a large .
number of videos are falsely detected as near-duplicatéshw B
cause the pool of candidate tags to be relatively noisy. On
the contrary, with an accurate near-duplicate video nettje q numa gary brolsma numanumad dance
VK++ and VK# offer comparably better annotation quality.
The P@5 measure of VK# is around 0.8, which exhibits
satisfactory annotation accuracy. It means that among top g >
recommended tags, nearly 4 of them are closely relevant to -
the video content. visual content, the performar!ce of search-baged anmtexﬂo

To compare the results to a baseline (termed as uOraC%ependent on whether the right content of videos is always
in Table VI), we also show the ideal performance when atﬁorrectly tagged by users.
ground-truth near-duplicates are perfectly detected. thero _
words, Oracle is the results with the similarity scores agtr C- Béyond Model-free Annotation
near-duplicates being set to 1 (see Eqn 18), while others ard he previous two subsections present the performance based
weighted with zero scores. From Table V, it can be noticaxh the queries which have near-duplicates in the datasets. F
that the results of VK++ and VK# indeed approach the ideglieries which are novel, proper message should be signaled
performance. such that no tags will be recommended for annotation. In

The top 5 representative tags of some examples are illiis subsection, we study the ability of four approaches in
trated in Figure 5. We can see that the suggested tags are meletermining novel videos. We use all new videos (8,466 in
ingful. For example, the second video belongs to “White artdtal) in DS SOURCE and DSTIME as queries for testing
Nerdy”. In addition to the common words: “white”, “nerdy”the capability of identifying these new videos. Accuracy is
the suggested tags provide new clues and useful informatiemployed as the evaluation measure. The performance of
for this video, such as the author name “al yankovic”, aniwur approaches in DSOURCE and DSTIME datasets is
his theme “weird al”. It is able to summarize the commentsted in Table VII, in which the accuracy is averaged over
or view points from several users regarding this set of simil24 topics. VK and VK+ demonstrate poor performance in
videos. In addition, abstract tags such as “funny”, which isoth datasets. Around 15% and 40% of novel videos falsely
difficult to train with model-based approaches, is alsoudeld identify near-duplicate videos by VK in the reference detas
for two videos in Figure 5. This tag, although somewhdbr DS SOURCE and DSTIME, respectively. The perfor-
subjective, is commonly used to annotate similar versidns mance in DSTIME is worse than in DSSOURCE. Since
videos in our dataset, and is also marked as appropriatecby tifte number of novel videos (7,318) tested in_D8VE is
assessors. Content-related tags are also suggested. ifiche thuch larger then the one in DSOURCE (1,148), it causes
video in Figure 5 is a commercial for “Sony Bravia” TV seta drop in performance. With E-WGC, VK++ significantly
The dominant content in this video is series of balls boumcinimproves the performance, in which a considerable portion
and the content is captured by the tags “bounce” and “balbif false matches is successfully eliminated for DS8VE. By
Nevertheless, compared to model-based approaches whichiocaorporating RE, VK# boosts the performance, especialty f
offer better recall in providing consistent labeling of priment DS_TIME. Because datasets DSOURCE and DSTIME are

sony bravia ball commerce bounce

anchorman delight afternoon ferrel funny

-

Examples for tag annotation.
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TABLE VI TABLE VI

PERFORMANCE COMPARISON FOR IDENTIFYING NOVEL QUERIES TIME COST COMPARISON
Mstiod TG S = = Method || KF Extr.  Feat. Extr. VK Quant.  Online Retr.
etho || ross ourcq| ross Time TS Tos S = 0016 S
VK 0.850 0.590 VK 10s 1.x53s 04%53s 0.08%53s
VK+ 0.831 0.420 VK+ 10s 1.53s 04k53s 0.3%53s
VK++ 0.926 0.805 VK++ 10s 1.x53s 04k53s 0.3%53s
VK# 0.974 0.904 VK# 10s 1.x53s 04k53s 0.3%53s

. . . . The average number of keyframes in one query video is 53.
collected from various sources and at different time pes;jiod

the videos in the datasets may demonstrate totally differed@5=0.978, P@5=0.804), but is still competitive compared
content. Therefore, E-WGC and RE demonstrate inconsistémthe original results. Detecting near-duplicates alsmbees
improvement for these two datasets. However, we can ssghtly less effective with recall=0.921, precision=08and

that E-WGC and RE complement each other for differeMAP=0.663.

datasets. Their combination makes VK# a robust approach foin practice, for applications which do not require instant
identifying near-duplicate videos while pruning false olets. query response, VK# indeed offers reasonable trade-off be-
More than 97% and 90% novel videos can be correcttween speed and effectiveness. For instance, in the case of

signaled for two datasets. cross-source tagging where the purpose is for improving
search performance of an engine, the tagging can indeed be
D. Speed Efficiency and Scalability performed offline. For cross-time tagging, if user intei@atis

The efficiency is a critical factor for consideration, espenOt expe_cted, VK# can be runin the_ background to increm_en-
cially for web scale applications. Mainly the following facs tally enrich or extend the tags provided by users. Otherwise

affect the computation cost: keyframe extraction, locahpo JSH-E or VK (with lower sampling rate of keyframes and
feature extraction, visual keyword quantization, and neeﬁgypomts) _COUId be a better chqlce, in which users can
duplicate video retrieval on inverted file. The time costs o?'mp'Y and mstantly select .approprlate tags recommenged b
these four factors are listed in Table VIII. According to 0u|;nach|ne, though with loss in recall for all relevant tags.
experiment, time cost for HT, RE and tag recommendation
is negligible. Our programs are implemented in C++, and VIII. CONCLUSION AND DISCUSSION
performed on a PC with Intel Duo Core 3.2GHz CPU and With the rival growth of social media, there are abundant
3G memory. Among all approaches, LSH-E is the fastest. Fadeo resources available online. They are usually accempa
one query video, it takes less than 1.5s to fulfill the retiev nied by user-supplied tags, which provide a valuable resour
The time costs for VK based approaches are much higherexplore. Different from traditional approaches whiclopt
because they are operated at the keyframe level and usbognputer vision or machine learning techniques, we investi
local features. gate the potential of a data-driven and model-free approach
In our dataset, the average length of a query is apprde- annotate the web videos. A simple but effective solution
imately 3 minutes with about 53 keyframes, and 260 keys proposed by employing the near-duplicate video rettieva
points per keyframe. To process a query of average lengtbchniques and classifier-free video annotation. An &ffect
as shown in Table VIII, in total it takes 84 seconds fonear-duplicate retrieval approach which integrates ecédn
VK, and 98.6 seconds for VK+, VK++ and VK#. Withoutweak geometric constraint (E-WGC), Hough Transform (HT),
geometric consistency checking, VK is about 15% times fastand reverse entropy (RE) has been proposed. In particular,
From our observation, the use of HE indeed helps to prul&# has shown superior capability in pruning out false alsrm
significant amount of potential matches that otherwise hagempared to the-state-of-art VK technique. Represemt#iys
to be processed by WGC and E-WGC. Compared to mazee then recommended to annotate using videos from differen
costly but widely used geometric checking such as RANSAGpurces or time. Experiments on cross-source and crogs-tim
WGC and E-WGC are approximately 40 times faster in owlatasets demonstrate the effectiveness and robustnebksg of t
experiments. proposed data-driven approach. Currently, the proposed VK
In our current implementation, the most time consumingased approaches cannot be directly extended to cope with
parts are the extraction of keypoints and VK quantizatioglobal features. Further research is required to invetitie
The excessive number of keyframes and keypoints pragticgiroper integration of global and local features for moreatgé
makes VK based approaches less scalable if comparedatw speedy search-based annotation.
LSH-E. To trade off speed and effectiveness, possible ad-Our approach annotates videos by exploiting visual dupli-
justment includes using less keyframes and less keypointates. As indicated in our cross-source and cross-timeselsta
To provide insights, we experiment a new setting by exhere are 38.6% and 13.5% videos having correspondinglvisua
tracting one keyframe per shot from query and reducing tldeplicates. In other words, a larger portion of novel vidaces
original amount of keypoints by half per keyframe, whicluploaded each day. For novel videos which cannot find the
results in an average of 35 keyframes per query. Under tlzisunterpart in the reference dataset, our approach is enabl
new setting, VK# only requires 33.1 seconds on average tto provide meaningful tags. However, once the videos could
complete a query. We conduct simulation for cross-time tafind at least one near-duplicate and as the size of reference
ging. The annotation performance drops slightly (MRR=0,94dataset continues to grow, our approach can take effect. As a
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remark, the works presented in this paper indeed provide [a8] L. Wy, L. Yang, N. Yu, and X.-S. Hua. Learning to tag. Fmoc. World
efficient way of annotating videos which “look familiar” or
are “partially new but previously seen”.
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