Near-Duplicate Keyframe Identification with
Interest Point Matching and Pattern Learning

Wan-Lei Zhao, Chong-Wah Ngo*, Hung-Khoon Tan, Xiao Wu

Abstract—This paper proposes a new approach for near-
duplicate keyframe (NDK) identification by matching, filtering
and learning of local interest points (LIPs) with PCA-SIFT
descriptors. The issues in matching reliability, filtering efficiency
and learning flexibility are novelly exploited to delve into the
potential of LIP-based retrieval and detection. In matching,
we propose a one-to-one symmetric matching (OOS) algorithm
which is found to be highly reliable for NDK identification,
due to its capability in excluding false LIP matches compared
with other matching strategies. For rapid filtering, we address
two issues: speed efficiency and search effectiveness, to support
OOS with a new index structure called LIP-IS. By exploring
the properties of PCA-SIFT, the filtering capability and speed
of LIP-IS are asymptotically estimated and compared to locality
sensitive hashing (LSH). Owing to the robustness consideration,
the matching of LIPs across keyframes forms vivid patterns
that are utilized for discriminative learning and detection with
support vector machines. Experimental results on TRECVID-
2003 corpus show that our proposed approach outperforms other
popular methods including the techniques with LSH in terms of
retrieval and detection effectiveness. In addition, the proposed
LIP-IS successfully speeds up OOS for more than 10 times and
possesses several favorable properties compared to LSH.

I. INTRODUCTION

Recently, near-duplicate keyframe (NDK) identification has
attracted numerous research attentions, mainly due to its
unique role in news search [1], topic detection and tracking
(TDT) [2] and copyright infringement detection [3]. NDKs, by
definition, are keyframes near-duplicate to each other despite
the slight to moderate degree of variations caused by lighting,
viewpoint, acquisition time, motion and editing effects. NDKs
are commonly found in broadcast videos. In TDT, NDKs pro-
vide a strong cue to link and track topic-relevant news stories
across sources, languages and times. The detection of NDK
is critically useful for the exploitation of story redundancy
and novelty in news topic threading. As experimented in [2],
utilizing both NDK and text cues for modeling topic structure
can achieve 10 — 20% of improvement compared to text-
only approach. The recent work in [1] also demonstrates the
usefulness of NDKs in boosting the performance of interactive
multimedia search.

NDK identification is a challenging task due to a variety of
capturing, digitalization and editing conditions, which result

The work described in this paper was fully supported by a grant from the
Research Grants Council of the Hong Kong Special Administrative Region,
China (CityU 118905).

The authors are with the Department of Computer Science, City University
of Hong Kong.

Chong-Wah Ngo is the contact author. Please direct all enquiries to
C. W. Ngo by Email: cwngo@cs.cityu.edu.hk or Tel: 852-2784-4390 or Fax:
852-2788-8614.

Fig. 1.
variations

Examples of NDK pairs due to lighting, viewpoint, color and lens

in a serial of geometric and photometric transformations.
Figure 1 shows four pairs of NDKs varied in terms of lighting,
viewpoint, color, contrast and camera lens. Generally speak-
ing, low-level global features cannot guarantee the effective
identification of NDKs. Color features, for instance, can easily
cause errors especially when lighting conditions change and
the special effects are added to keyframes. Compared to
global features, local features, which are distinctive and robust
to changes due to different transformations and operations,
appear to be prominent for NDK identification. One excellent
example is the texture descriptors computed upon local interest
points (LIPs) [4], [5]. LIPs (also referred to as keypoints) are
salient regions detected over image scales, and their descrip-
tors are basically features extracted from the local patches
centered around LIPs at given scales. The capability of LIPs
has not been fully exploited in multimedia retrieval. A success
story is video google search [6] where over thousands of
LIPs are detected and clustered as visual keywords for object-
based retrieval and mining. Currently, there are numerous LIP
detectors and descriptors in the literature. The recent studies in
[5]1, [7] have evaluated the performance of different detectors
and descriptors.

In this paper, we adopt Lowe’s difference of Gaussian
(DoG) detector [4] for detecting LIPs. This detector is scale
invariant and can tolerate certain amount of affine transfor-
mation. For LIP representation, we use PCA-SIFT descriptor
[8] which is a compact version of SIFT (scale-invariant feature
transform) feature [4] undergone principal component analysis
(PCA). PCA-SIFT has been shown to be distinctive and
robust to color and photometric changes [3]. Although LIP-
based descriptors are ideal for near-duplicate identification,
the large amount of LIPs available for matching can actually
overwhelm their potential. Typically a keyframe of resolution
352 x 264 can have more than one thousand LIPs. With
this amount, comparing two keyframes can take up a million
of LIP comparisons in the high dimensional feature space.
To cope with the speed issue, filtering support is critically

demanded for suppressing the number of comparisons down
to a minimum level.

This paper addresses the issues of LIP matching, PCA-
SIFT filtering and pattern learning to fully exploit the potential
of LIPs for NDK identification. We study two tasks: NDK
retrieval and NDK detection, in these aspects. In retrieval, the
goal is to pull the NDKs of a query to the higher positions
of a ranked list so that users can rapidly locate them. In
detection, two keyframes are given and a binary decision is
made. An interesting issue we study is that the matching
patterns formed by NDK pairs can actually be learned for
detection. Different from non-NDK pairs, NDK pairs often
show LIPs that are smoothly matched over certain spatial
arrangements. These matching patterns indeed provide vivid
cues for accurate detection. The major contributions of this
paper include:

e Matching. We propose one-to-one symmetric (OOS)
mapping to constrain the nearest neigbour search in LIP
set matching. Under this strategy, each LIP can pair with
at most one LIP, and furthermore LIPs in a pair are the
nearest neighbor of each other. OOS has the merit that
only the most reliable pairs are kept for learning so that
the ambiguous and false matches can never overcome the
true matching patterns of NDK pairs.

o Filtering. A multi-dimensional index structure, LIP-IS, is
proposed for the rapid filtering of PCA-SIFT descriptors
for OOS matching. An efficient collision function is
incorporated with LIP-IS to increase the probability of
locating a nearest neighbor with high speed. By exploring
the data distribution of PCA-SIFT components, the lower
and upper bound probabilities of colliding a similar pair
of LIPs can be formulated to show the effectiveness of
LIP-IS. In addition, the filtering capability of LIP-IS can
be asymptotically computed and its probability of missing
nearest neighbor can also be estimated.

o Learning. The matching of LIPs across NDKs is often
highly localized and spatially smooth. We capture this
cue in a histogram of matching orientations and then learn
the patterns with Support Vector Machines (SVM). This
approach is found to be particularly effective for NDK
detection where a binary decision is required for every
keyframe comparison.

The remaining sections are organized as follows. Section II
describes the related works in NDK retrieval and detection.
Section III briefly summarizes the properties of DoG LIP
detector and PCA-SIFT descriptor. Section IV motivates the
use of one-to-one symmetric (OOS) LIP matching strategy in
NDK identification. Section V presents our proposed LIP-IS
for accelerating OOS matching while Section VI explores the
properties of PCA-SIFT descriptors to uphold the validity of
LIP-IS in filtering. Section VII proposes a novel idea to learn
the matching patterns of NDKs for pattern discrimination.
Section VIII presents the experimental findings by comparing
the performance of different approaches in NDK retrieval and
detection. Finally, Section IX concludes this paper.

II. RELATED WORK

Duplicate detection has been studied in various media
including video, image and music [9], [10], [11]. In image
fingerprinting literature [9], [12], the visual content, which is
normally referred to as fingerprint, is identified based on the
low-level features of an image. The fingerprints are indexed
and used for retrieving the suspicious pirated copies of a
query image for human inspection. In video copy detection
[10], [13], the researches are mostly focused on the rapid
identification of similar clips, where fast algorithms are pro-
posed by deriving signature to represent the clip contents.
One successful example is the retrieval of commercial clips in
large database with high speed [10]. Existing copy detection
approaches, in both image and video domains, mostly employ
the global or local statistic of features and concatenate them
into a vector for retrieval. The use of single feature vector for
rapid identification, nevertheless, is generally not tolerant to
the perturbation of lighting, color and various transformations.
As a consequence, these approaches, while being efficient for
detecting the exact duplicate copies, tend to overlook near-
duplicate copies which are perturbed by factors such as the
photometric and geometric changes.

Near-duplicate detection, particularly in the context of video
keyframe, has been addressed recently, partly attributed to
the emergence of TRECVID benchmark [14] for multimedia
search. Representative works in near-duplicate identification
include [3], [15], [16]. In [15], NDKs (or Candidate Repeating
Keyframes) are detected by ordering and examining the N
neighbors of a keyframe. A “jump” indicator is used to
detect NDKs by investigating the first derivation of keyframe
similarity. This approach is heuristic and sensitive to the
setting of several empirical parameters. In [16], a stochastic
attributed relational graph (ARG) matching with part-based
representation is proposed for NDK identification. Under this
setting, ARG is a fully connected graph with detected SU-
SAN (Smallest Univalue Segment Assimilating Nucleus) [17]
corners as vertices, and the matching of ARGs is constrained
by the spatial relation imposed by corner points. To reduce
computational load, a distribution-based similarity model is
learnt locally and globally in the vertex and graph levels
respectively. The learning is feasible since the matching (or
transformation) of NDK pairs often follow certain geometric
arrangement, otherwise they should not be categorized as
“near-duplicate”. Although interesting, the approach in [16]
suffers from the limitations of slow matching speed and the
requirement of heuristic parameters for learning.

In contrast to [16], the approach in [3] utilizes the PCA-
SIFT descriptors of LIPs for direct point set matching. To
accelerate matching speed, an efficient index structure based
on locality sensitive hashing (LSH) is further proposed to
facilitate fast search. LSH, nevertheless, requires several user-
defined parameters which impact the distortion and granularity
of search. In addition, [3] only applies their approach to
high-resolution art images, and its robustness remains un-
clear when the target database is composed of keyframes
suffered from low-resolution, motion-blur and compression
artifacts. Point set matching usually requires post-processing

such as RANSAC (RANdom SAmple Consensus) [18], Hough
transform or homography constraint checking to explicitly
eliminate false matches [3], [4], [16]. However, RANSAC is
only applicable when correct matches dominate false matches.
Hough transform, on the other hand, only favors keyframes
with certain regular shapes like lines and circles. In videos,
imposing the aforementioned post-processing techniques has
certain limitations since objects can be embedded in highly
cluttered and complex background, let alone the fact that ob-
jects in NDKs may have undergone illumination and viewpoint
changes.

In this paper, as in [3], we adopt point set matching, and
propose a new index structure called LIP-IS to support fast
filtering. LIP-IS is theoretically and practically favorable than
LSH [19] in the context of LIP-based NDK identification. It
is more capable of locating nearest neighbors in approximate
search and requires less parameters than LSH. The proposed
NDK detector, as in [16], adopts supervised learning, but
it learns the patterns of matching, rather than the statistical
parameters of pre-defined distributions. Since the matching
of LIPs are supposed to be spatially coherent for NDK
pairs, indeed it may not be necessary to explicitly encode
the spatial relation with ARG to constrain matching. Instead,
our approach performs point set matching with one-to-one
symmetric constraint. The outcomes of matching form either
spatially regular or random patterns ready for NDK learning
and detection. In addition, unlike [3], [16], no post-processing
is required.

III. FEATURE EXTRACTION WITH LIP DETECTOR AND
DESCRIPTOR

We employ the DoG (Difference of Gaussian) detector
proposed by D. Lowe for LIP detection [4], and the PCA-SIFT
descriptors proposed by Ke and Sukthankar to characterize
LIPs [8]. The DoG detector and SIFT-based descriptor provide
several characteristics that are ideal for NDK identification.
First, the detected LIPs are invariant to scale and rotation.
Secondly, the descriptors are robust to geometric and photo-
metric transformations such as affine warp, brightness, contrast
and color changes. Correct matches can be effectively located
even if occlusion and cropping exist. In DoG detector, LIPs are
searched over all scales and locations of keyframes. Basically
a pyramid of Gaussian images is constructed, and a DoG
function is used to locate potential LIPs that are invariant to
scale and orientation. A detailed model is then fitted, to the
sub-pixel and sub-scale accuracy, to determine the location
and scale of a LIP. LIPs that are not distinctive and poorly
localized along the edges are rejected at this stage. Finally,
one or more orientations are assigned to individual LIP based
on the directions of local gradient. The orientations, scale
and location of a LIP provide an effective mean of extracting
salient descriptor that is invariant to similarity transforms.

The local descriptor characterizes a LIP based on a patch
of pixels in its local neighborhood. The patch is centered
on a local extreme, scaled to appropriate size, and rotated
based on its dominant orientation. SIFT (scale-invariant feature
transform), originally proposed in [4], is a 128-dimensional

feature vector that captures the spatial structure and local
orientation distributions of a patch. Basically, each patch is
divided into 4 x 4 blocks, and a 8-bin histogram of orientation
is computed for each block. The 16 histograms are cascaded
one after another to form the descriptor SIFT. The PCA-
SIFT, proposed in [8], is a modified version of SIFT that
can achieve better accuracy and efficiency. In PCA-SIFT, an
eigen space is offline computed to represent the gradient
images of local patches. Given a 41 x 41 patch extracted
according to the scale, location and orientations of a LIP, its
gradient image is computed, normalized and then projected
to the eigen space. The top few components of the projected
vector are then extracted to form a local descriptor. Based
on the property of PCA, each component in PCA-SIFT is
normally distributed and orthogonal to other components. In
our approach, we extract the first 36 components of a projected
patch as descriptor. This 36-dimensional PCA-SIFT descriptor
has been shown to achieve the best matching performance in

[8].

IV. ONE-TO-ONE SYMMETRIC LIP MATCHING

Given LIPs extracted separately from two keyframes, we
need to align them, from one keyframe to another, so as to fa-
cilitate the similarity measurement. LIP matching is considered
as a bipartite graph matching problem. There are numerous
algorithms for point set matching. Depending on the mapping
constraint being imposed, we can categorize them as many-
to-many (M2M), many-to-one (M20), one-to-many (O2M)
and one-to-one (020) matching. The factors that affect the
choice of matching strategy include noise tolerance, similarity
measure, matching effectiveness and efficiency. In videos,
frames are always suffering from low-resolution, motion-blur
and compression artifact. Noise becomes a crucial factor in
selecting matching algorithm, particularly when the matching
decision is made upon a small local patch. In NDK identifica-
tion, keyframe transformation introduces noise, and noise itself
affects the performance of LIP detection [4]. The localization
errors caused by LIP detector deteriorate the distinctiveness of
PCA-SIFT. It becomes very common that a LIP fails to find
its corresponding LIP in another keyframe, and on the other
extreme, a LIP can simply match to many other LIPs due to
mapping ambiguity. In principle, to suppress faulty matches,
020 matching appears to be noise tolerant although some
correct matches may be missed. For instance, although M2M
is applicable for many retrieval problems [20], there exists
no effective mechanism to restrict false matches. Figure 2
contrasts the M20O and O20 matching of a NDK pair. The
M20 matching is implemented with Lowe’s nearest neighbor
search (NN) [4], where exhaustive search is used to match
every LIP to its nearest neighbor in another LIP set under
Euclidean distance. The O20 matching is implemented with
optimal matching (OM) algorithm [21]. Two LIP sets are
optimally matched to maximize the overall score (similarity)
of the bipartite graph under the O20 constraint. As shown in
this figure, M20O matches (marked by red circle) are mainly
caused by noise and local visual ambiguity. They indeed
complicate the similarity measurement of point sets. OM, in

contrast, basically removes these matches and retains only the
matches that survive the O20 restriction. However, OM is not
necessarily a superior choice than NN. The ultimate goal of
OM is to optimize matches and it does not guarantee a match
pair to possess the nearest neighbor property.

Fig. 2. Matching comparison: many-to-one (left) vs one-to-one (right)

For NDK retrieval, the choice of NN or OM may not be
critically important. The relative similarity ranking among
keyframes can somewhat alleviate certain degree of faulty
matches. However, for NDK detection, a single faulty match
can overcome a clever decision. In our approach, to allow
effective learning of matching patterns, false matches should
be kept to a minimum level. To retain only the most reliable
matches for learning, we introduce a new scheme — namely
one-to-one symmetric matching (OOS). Similar to OM, OOS
belongs to 020, but as NN, OOS ensures all the matches
are the nearest neighbors. The symmetric property is also
emphasized so that if LIP P matches to @), then P is the
nearest neighbor of @ (i.e., P — @) and similarly P «— Q.
This property indeed makes OOS stable and unique, i.e., the
result of matching LIP set A to set B is exactly the same as
B to A, unless there are LIPs that have more than one nearest
neighbor. The 020 and symmetric constraints indeed come
from the intuition that LIPs should reliably match each other
if they do belong to a duplicate version.

OOS meets the definition of near-duplicate keyframe nicely.
A NDK pair, by nature, should be symmetric of each other
in certain regions of keyframes. By imposing symmetric con-
straint, we indeed enforce the stability of LIP matching. The
stability can lead to more efficient and reliable NDK detection
if the transitivity closure of NDK pairs holds. In other words,
if keyframes %k and k; are NDK pair, and similarly £, and
ks are NDK pair, we can draw the conclusion that k; and
ks are NDK pair as well without any effort. However, to
propagate this transitivity, the matches between (k1,k2) and
(k2,ks) should be symmetric and stable. Generally speaking,
020 matching cannot guarantee each matched LIP pair to be
meaningful. Some false matches indeed could exist with high
similarity value. But it becomes a rare case for these false
matches to be symmetrically stable and paired to each other
in both directions. Figure 3 shows the matching results of a
NDK pair with OOS and OM. Basically OOS successfully
excludes most of the false matches (red lines) found in OM.

Besides matching constraint, another concern is whether to
permit full or partial matching. In full matching, all points in
two sets are matched. In partial matching, only a subset of
points are matched to exclude point pairs with low similarity

Fig. 3. Matching comparison between one-to-one (left) and one-to-one
symmetric (right) strategy (white line indicates correct match, and red line
shows false match).

measure. In NDKs, due to editing operations, very often only
sub regions are near-duplicate. LIPs outside these regions can
introduce meaningless matches. As a consequence, similar to
[3], [4], we adopt partial matching with the aid of thresholding
as follows

Sim(Q, P) > « (1

The threshold a specifies the minimum allowable similarity
between two LIPs for a potential match. In Eqn (1), the
similarity of two LIPs) and P described by PCA-SIFT,

denoted as @ = [q1,q2,...,q36] and P = [p1,p2,. .., p3s),
is defined as ”
Sim(Q,P) = q; X p; 2
=1

where p; and ¢; are normalized such that they are in the
range of [—1,1] and |P| = |Q| = 1'. Eqn (2) specifies the
cosine angle of) and P in the high dimensional feature
space. Let K as the set of LIP pairs that satisfy Eqn (1) and
being matched by OOS in two keyframes. Subsequently, the
similarity between keyframes can be determined directly based
on the cardinality of K, or by taking into account each LIP
pair as follows

KSim(K) = 2 (@.Pex Sm(Q. P) 3)

K]

where |K| denotes the cardinality of K, and K.Sim computes
the average similarity of LIP pairs being matched in two
keyframes.

V. FILTERING WITH APPROXIMATE NEAREST NEIGHBOR
SEARCH

In OOS matching, given a query LIP) and a keyframe
I with a collection of LIPs C, the fundamental task is to
find the nearest neighbor P e Cof Q. This task essentially
involves a series of comparisons which can be computationally
expensive. The aim of filtering is to omit some comparisons by
rapidly locating the set of candidates in C that has potential to
become the nearest neighbor of (). In the current literature,
there are various multi-dimensional index structures (e.g.,
locality sensitive hashing [19]) that allow the approximation

Note that it is not necessarily to set the norms of P and @ to 1. We set
|P| = |Q] = 1 to relate matching and filtering, and simplify Eqn (7) and
Eqn (13).

of neighbors. In this section, we begin by proposing a new
index structure to accommodate PCA-SIFT (Section V-A).

For filtering purpose, we define a similarity, Sim’, to ap-
proximate Eqn (2). Let P and @) as the PCA-SIFT descriptors
of two LIPs, the similarity measurement between P and @ is
estimated as

36
Sim (Q.P)=>_C(qi.p:))
=1

where the degree of closeness between two 1D points is
elaborated by a collision function 0 < C < 1 (Section V-
B). An interesting note is that the upper and lower bound
probabilities of colliding a similarity pair of ¢; and p; can
be estimated (Section V-C). Then a decision is made to gate
whether @ and P are potentially the nearest neighbor, defined
as

Yes if Sim (Q,P) > 36— M

No Otherwise)

N (Q7 P) = {
The gating parameter M is a margin that can be rigorously
computed (Section V-D). In brief, the problem of filtering is
to rapidly find a subset of C, called A, where

A(Q) = {PIN(Q, P) = Yes} (6)

A. Indexing and Query Processing

To allow fast filtering, we introduce a new index structure,
namely LIP-IS, specifically for LIP indexing with PCA-SIFT
descriptor. LIP-IS is indeed a hash structure with a group
of 36 histograms formed independently by every component
of PCA-SIFT. Given a keyframe with LIP set C, a LIP-IS
is constructed by equally and independently quantizing each
dimension into 8 bins, with a resolution of A = 0.25 (the

range of a component is [—1, 1]). Given P = [p1,pa, .. ., P3¢,
the index of p; is hashed to,
pi+1
i) = 7
Hpi) = =1~ (7)

In total, a LIP-IS is composed of 8 x 36 bins, as illustrated
in Figure 4. Given a point P, we repeatedly index it into
the corresponding bins of 36 histograms, according to its
quantized value in a particular dimension. Thus, each LIP
is hashed for 36 times in LIP-IS. Given a query point (),
similarly we hash it repeatedly for 36 times, and retrieve all
points that satisfy Eqn (5). Based on the collision function
which will be presented in Eqn (8), when ¢; is hashed to bin
j of it" dimension, all points in bins j — 1, j and j + 1 will
be considered, as shown in Figure 4. Finally, those points that
meet Eqn (5) form the set A(Q) in Eqn (6) for LIP matching.
The overall algorithm is summarized in Algorithm 1.

B. Designing Collision Function

Because the axes of PCA-SIFT descriptors are orthogonal
to each other and the data is modeled as Gaussian distributed
along each direction, there are several ways to design the
index structure and its corresponding collision function. One
possible structure is with adaptive binning in each dimension,
by exploring the data distribution of PCA-SIFT in every

J-1

Jj+1

36 dimension PCA-SIFT

Fig. 4. LIP-IS for approximate search. Given a query point falls in location
“x”, all LIPs inside gray bins will be retrieved.

Algorithm 1 Local interest point matching with LIP-IS filter-
ing mechanism.
o INPUT: Keyframe I; with LIP set C;, and keyframe 1o
with Cy
e OUTPUT: One-to-one symmetric LIP pairs
1) Hash all points in Cy to LIP-IS;
2) For each point @ in Cq,
a) Hash @ to LIP-IS;
b) Retrieve the set A(Q) satisfying Eqn (5);
¢) If A(Q) # 0, find the nearest neighbor P €
A(Q) with one-to-one symmetric constraint;
3) Return the set of matched pairs, i.e., {(Q,P)|Q €
Cl, Pe CQ}

dimension. In other words, the size of bins varies within and
across the dimensions. Such structure, however, comes with
the price of time which can slow down both the indexing and
querying speed.

LIP-IS adopts uniform quantization. A possible way to
design its collision function C is to measure the Gaussian
distance between two LIPs when they collide. One disadvan-
tage is that this function is slow in evaluation. Furthermore,
the Gaussian parameters at each dimension need to be pre-
computed and updated. For speed efficiency, we measure the
distance between two LIPs () and P at ¢ dimension with
uniform distribution:

Clgi,pi) = {

The hashing function A is defined in Eqn (7). Combining
Eqn (8) with Egs (4)-(6), P € A(Q) if they collide in 36 — M
dimensions. This algorithm has the merit that it is efficient
and easy to implement with simple bit operation. We compare
Eqgn (8) with a Gaussian-based collision function, and find that
their performance is quite close but the former is significantly
faster in filtering.

1 if [H(g) —Hp)| <1

0 Otherwise ®)

C. Probability of Collision

Since LIP-IS is uniformly quantized and its collision func-
tion assumes uniform distribution, we estimate the probability
of colliding two LIPs P and (), when their underlying distri-
bution is Gaussian. There are two extreme conditions for P
and @ to and not to collide at dimension 4. In the first case, the

distance between them is 2A and they collide. One example
is when P and () fall into k& and k — 1 bins respectively. The
value of P is just slightly less than (k+1) x A and the value
of @ is exactly (k — 1) x A. Thus P and @ will collide at 4
dimension. In the second case, the distance between P and @)
is about A but they do not collide. One example is when P
and @ falls into k£ and k — 2 bins respectively. The value of P
is k x A and the value of @) is just less than (kK — 1) X A. In
other words, P and @ slightly miss for collision. For ease of
analysis, we term the first case as “best case”, and the latter
as “worst case” of collision.

Because PCA-SIFT descriptors are Gaussian distributed
with mean p; and o; in ¢ dimension, its distance distribution
between ¢; and p;, i.e., 2; = q; — p;, can be characterized by
a probabilistic density function as,

P(zi) =

22
;2} and z; >0)

1
\/TTUZ' exp{— 4
In the best case, the probability that () collides with P at 4
dimension is expressed as,
28

0 Vamo "
In the worst case, two LIPs collide with the following proba-
bility,

22
P, =2 {~) d= (10)

A 22
P,=2 ——exp{——5}dz 11
Basically two LIPs which are similar are likely to collide at
1 dimension. Eqn (11) sets the lower bound probability for
this type of collision. On the other hand, two LIPs with lower
similarity are less likely to collide at ¢ dimension, and Eqn (10)
sets the upper bound of the probability for collision.

D. Computing Gating Parameter M

Theorem 1: The LIPs satisfying Eqn (1) will collide each
other at least in 36 — M out of 36 dimensions if

2(1 — «)

M< =

12)

Proof: Given two LIPs @ and P which are vectors in
high dimensional space, we can relate their Euclidean distance
and the cosine similarity in Eqn (2) by exploiting the law of
cosines as below

Q= PP = QI +|P|* =2 x|Q| x |P| x Sim(Q, P) (13)

Since |P| = |Q| = 1, we have

- 12
Sim(Q,P)=1— Dist’(@, P) éQ’P) (14)
where
36
Dist*(Q,P)=|Q — PP =) (¢ —p:)*> (15

i=1

Suppose there are M out of 36 dimensions with (¢; — p;)? >
2A. Then, given the index structure, the minimum distance,
Dist(Q, P), between @ and P is

36

Dist*(Q,P) = Y (¢ —pi)° (16)
=1

> 0240%+... +02+A2+ A2+ .+ A2

36— M M
Comparing Egqn (16) and Eqn (14) with the inequality,
Sim(P, Q) > «, in Eqn (1), we can easily derive

2
,_MA

>« a7
which is exactly Eqn (12) after simple manipulation, and this
ends the proof.

Theorem (1) specifies how to compute M in Eqn (5),
given the parameter a. Meanwhile, it guarantees that all LIP
candidates being filtered are with the similarity smaller than
«. Note that this does not mean the candidate set A will keep
all LIPs with similarity values greater than «e. However, it does
assure in all cases that the nearest neighbor P of @ must be
inside A, except when Sim(Q,P) < «. Theorem (1) also
specifies how to select A, if the parameters « and M are
given.

VI. FILTERING ANALYSIS AND COMPARISON

LIP-IS has the property that it is specifically constructed to
facilitate the similarity measurement in Eqn (4). Its relation-
ship with the actual LIP similarity (Eqn (2)) is expressed in
Theorem (1), which relates the parameters M, o and A. In
this section, we further explore the complexity of LIP-IS in
supporting the query processing and in locating the nearest
neigbour.

A. Filtering Capability

The size of candidate LIPs, i.e., |A|, determines the filtering
effectiveness. The smaller this value, the better the filtering
capability. For simplicity, we assume the features in all di-
mensions of PCA-SIFT have the same mean p and variance
o under Gaussian distribution. Then according to Eqn(10),
the upper bound probability of colliding LIPs P and @ at
a dimension is P;. Assuming? the query LIP is independent
of the LIPs in C. The upper bound probability of a LIP being
retrieved, after looking at 36 dimensions, can be described as
follows

P; =P} (18)

Notice that Py <« 1 in general. Let n = |C| as the set
cardinality, the expected number of interest points in |A| is

Al = O(P; xn)

and Py <1 (19)

2This assumption is in general true when comparing non-NDK pair
(NNDK), not true, however, for NDK pair (NDK). Since in real world
the number of non-NDK pairs is much greater than the NDK pairs, i.e.,
[INNDK| > |NDK], this assumption actually holds for most cases.

B. Index Construction and Query Speed

LIP-IS construction is straightforward since each interest
point is hashed independently for d times, where d is the
dimension of PCA-SIFT. Denote n = |C|, the construction
takes d X m operations. Given a query interest point @,
similarly, we hash @ for d times in order to locate the set
A. The checking of whether a LIP in C collides with @ in
a dimension can be efficiently carried out with simple bit
operation. Since, in theory, n x Py LIPs will be retrieved for
matching under OOS constraint, the query speed is bounded
by O(d +n x Py).

C. Probability of Missing Nearest Neighbor

According to Theorem (1), the nearest neighbor of) with
similarity larger than « will collide with @ in 36 — M
dimensions. The nearest LIP 15, however, may not be found
inside set A if Sim/(Q, ﬁ’) < o and P does not collide with
@ in the remaining M dimensions. To simplify the estimation
of losing P, we assume the probability of collision of P and
@ in each dimension is equal but independent, and its lower
bound probability is P,, as specified in Eqn (11). The upper
bound probability of missing P, by imposing the restriction
that P should collide in the remaining M dimensions, can be
modeled with Bernoulli process as follows

>

=1

Piss =) PM-i(1-P,) =1-P¥ (20

where M = % with reference to Theorem (1). Practically
P..iss is very small for two reasons. Firstly, P normally
collides with) with a much higher probability than P,,.
Secondly the value of M is usually much smaller than 36
to allow fast filtering.

D. Comparison with LSH

Locality Sensitive Hashing (LSH) has been applied for LIP
filtering in [3]. Compared with LSH, LIP-IS has the advantage
that it maximizes the possibility of collision when two LIPs
are similar to each other. Table I shows the comparison of
LIP-IS, LSH and the naive approach (without index structure).
In LSH [19], [22], four parameters (I, s, ¢, €) are required.
The parameter [specifies the number of times a LIP set
to be tessellated. Each tessellated LIP set will be further
partitioned, in random, by s times. Both [and s impact the
speed of constructing LSH. Practically, the parameter s should
be larger than d to guarantee efficient filtering. With a larger
l, the probability of locating nearest neighbor becomes higher,
however, with the expense of huge memory space consumption
[3]. In addition, a higher value of | means the increase in size
of candidates set A. Practically a constant c is used to restrict
the number of returning candidates. In general, LSH uses c
and [to adapt filtering capability. It is difficult to optimize
the parameters in LSH to seek a balance between speed and
accuracy. In contrast, LIP-IS rigorously estimate its filtering
capability with the probability P tailored specifically to the
distance distribution of PCA-SIFT descriptor.

TABLE I
COMPARISON WITH LOCALITY SENSITIVE HASHING (LSH)

LIP-IS LSH Naive
Offline index dXxXn IXsXn
Filtering capability OPjs xn) n—cxl -
Online query time O(d+Pyxn) O(dxn'/1ts) O(n)
Prob. of missing NN | P,,;ss (Eqn (20)) ? 0
d: dimension; n: number of LIPs; [, s, ¢ and e: parameters in LSH;

?: not directly estimated

In LSH, the query speed is affected by a user-defined
parameter € which specifies the threshold of error tolerance. In
theory, LIP-IS can be about the same speed as LSH in term
of query time since Py < 1 while ¢ cannot be too large.
Similar to query speed, the probability of missing nearest
neighbor is not directly estimated in LSH, but depends on
the input of €. In LIP-IS, this probability is estimated with
P..iss which depends on the setting of gating parameter M.
The structure of LIP-IS indeed maximizes the probability
that LIPs similar to each other collide in their neighborhood.
Furthermore, because LIP-IS capitalizes on the distribution of
points in each dimension, the probability of missing nearest
neighbors is generally low. This property makes LIP-IS more
adaptive to different datasets, without the need of simulta-
neously optimizing several parameters to tradeoff different
factors as in LSH.

VII. LEARNING MATCHING PATTERN FOR NDK
DETECTION

NDKs often share common objects in some sub regions of
keyframes. If LIPs are correctly detected and matched, the
matching lines formed by the matched LIPs should be regu-
larly, nearly parallel, in these sub regions (see figures 11(b)-
(c) for illustration). In principle, the matching of LIPs for
NDK pairs should be spatially smooth and highly localized.
In other words, the groups of matched LIPs should be close in
space, and overall exhibit unique matching patterns that follow
certain spatial arrangements. For instance, NDK pairs are often
linked by a bunch of parallel or zoom-like lines formed by
matched LIPs. Non-NDK pairs, in contrast, may simply show
random patterns with matching lines being arbitrarily crossed
in space (see figures 11(e)-(f)). In this section, we propose to
capture the matching patterns with the histogram of matching
orientation, and then learn the patterns with Support Vector
Machines (SVM) for discriminative classification.

The histogram of matching orientations can be easily con-
structed by aligning two keyframes vertically, and quantizing
the angles formed by the matching lines and the horizontal
axis. With reference to Figure 5, two keyframes are arranged
vertically, and the matched LIPs are linked with straight lines.
The angles 6 between the matching lines and the horizontal
axis, in the range of 0° to 180°, are computed. Denote h as
the height of the upper keyframe (Keyframe-1 in Figure 5),
and the coordinates of LIP A in Keyframe-1 and LIP A’ in
Keyframe-2 as (zg,yo) and (x1, y1) respectively. The angle 0
is computed as follows

r1 — Xo

0 = arccos
(\/(561 —x0)% + (y1 +h — yo)?

) @D

A (xy,yo) Horizontal direction
0y B Horizontal direction h
0,
Keyframe 1
Line between
matching points
Line between
atchi ints
matching points B
A’ (X1, y))
Keyframe 2

Fig. 5. Computing orientation of matching lines

TABLE I
EXPERIMENTED APPROACHES WITH DIFFERENT MATCHING STRATEGIES
AND FILTERING SCHEMES.

LIP-IS LSH CH
One-to-One Symmetric (OOS) vV v vV
Nearest neighbor (NN) v vV Vv

Optimal matching (OM)

The histogram is constructed by counting the number of LIP
pairs at a particular range of 6. We quantize the histogram
into 36 bins with a step of 5° from 0° to 180°. An advantage
of this histogram is that the sizes of two compared keyframes
are not required to be the same.

The histograms of NDK pairs and non-NDK pairs are
input to SVM as positive and negative examples respectively
for learning and detection. SVM is based on the idea of
structural risk minimization. It achieves higher generaliza-
tion performance than other classifiers. We use radial basis
function (RBF) to map the training histograms into higher
dimensional feature space for pattern discrimination. With
SVM, the detection of NDK pairs becomes straightforward
in our approach. Given two keyframes, LIP set matching
is performed with the support of LIP-IS. The histogram of
matching orientation is directly computed based on the upshot
of matching. Subsequently, the histogram is fed into SVM to
perform binary classification to output the decision of either
yes or no detection.

VIII. EXPERIMENTS

We conduct experiments to assess the performance of NDK
retrieval and detection. We use the data set provided by [16]
for experiments. This data set consists of 600 keyframes
with 150 NDK pairs and 300 non-NDKs extracted from
TRECVID 2003 corpus [14]. All the keyframes are with the
same resolution of 352 x 264 pixels. By Lowe’s DoG LIP
detector, the number of local interest points for each keyframe
ranges between 10 to 2553. On average, there are 1200 LIPs
per keyframe.

To assess the performance, we compare different ap-
proaches, varying in terms of features, matching and filtering
strategies, as shown in Table II. We experiment three matching
strategies: nearest neighbor (NN), one-to-one optimal (OM)
and one-to-one symmetric (OOS) matching. NN is originally

proposed by Lowe for matching LIPs [4]. This strategy
allows many-to-one matching. For OM, there exist several
algorithms including the approximation versions varying in
term of computational efficiency and accuracy [23], [21]. We
use the classical MWBG (maximum weighted bipartite graph)
matching algorithm for implementing OM. OOS, originally
proposed in this paper, is straightforward to implement and
enforces both the one-to-one and symmetric matching of
nearest neighbors.

For filtering, we test three strategies: the proposed LIP-IS,
locality sensitive hashing (LSH) and color histogram (CH). For
LIP-IS, we set « = 0.87 and M = 0 to reduce the candidate
size as many as possible. For LSH, we manually optimize
the parameters and finally set [= 2 and s = 108 to tradeoff
both speed and accuracy. Under these settings, both LIP-IS
and LSH cannot guarantee the retrieval of nearest neighbors.
However, the probability of missing a nearest neighbor is much
less in LIP-IS than LSH. We will demonstrate this by showing
that LIP-IS gives significantly better results in both NDK
retrieval and detection when incorporating with OOS and NN.
In CH, each keyframe is represented by a 3D color histogram
of 162 bins in HSV color space. Hue, saturation and brightness
are quantized to 18, 3, 3 bins respectively. We experiment
both OOS and NN matching with LIP-IS, LSH and CH
supports. We only test OM with CH support. LIP-IS and LSH
are not considered since OM involves optimization and both
filtering schemes cannot support this procedure. Note that,
however, OM without any filtering support is computationally
intractable. Each keyframe comparison takes averagely 44
seconds to complete. For distance measure, all the approaches
use Cosine similarity measure (Eqn (2)). Three exceptions are
CH which uses histogram intersection, NN and NN with CH
support which use Euclidean distance as proposed in [4].

A. NDK Retrieval: Performance Comparison

We use all NDK pairs (300 keyframes) as queries for per-
formance evaluation. For each query, basically 599 keyframe
comparisons are involved and then a ranked list of keyframes
is produced according to their underlying similarity. We adopt
the measure proposed in [16] to assess the retrieval perfor-
mance by estimating the chance of hitting a correct NDK in
the top-k position of a ranked list. Formally, the probability
of the successful top-k retrieval is defined as

_ Qe
Q

where @, is the number of queries that rank their NDKs within
the top-k position, and @ is the total number of queries.
Figures 6-8 show the performance comparison of the pro-
posed approaches (OOS, LIP-IS+OOS) with other methods.
We use CH as the baseline to judge the improvement of
LIP matching and filtering. CH returns the top-40 similar
keyframes for further ranking by other matching strategies.
Basically, the approaches using CH for filtering make use
of both the color and PCA-SIFT features for retrieval. Dur-
ing NDK ranking, the keyframe similarity is based on the
cardinality of matched pairs. Intuitively, two keyframes with
larger number of matched point pairs reserve the higher

P(k) (22)

chance of claiming their NDK identity. The keyframes having
the same matching cardinality are further ranked according
to the average similarity of matched pairs, as indicated in
Eqn (3). Note that the keyframes with more number of LIPs
do not imply high matching cardinality, since we adopt partial
matching where a matched pair needs to satisfy Eqn (1).

Figure 6 shows the comparison of two matching strategies,
OOS and NN, with CH as the baseline. OOS shows constantly
better performance than NN across all k& = [1,30]. This is
mainly because OOS sustains only the most reliable matches
for ranking through one-to-one and symmetric constraints.
OOS successfully removes some faulty matches found in
NN. Overall, both matching algorithms show significantly
superior performance than CH, indicating the advantages of
LIP-based representation over color histogram which is sensi-
tive to lighting and viewpoint variations. Figure 7 shows the
performance of various filtering schemes when incorporating
with OOS. LIP-IS yields the best performance since the
chance of including nearest neighbors for OOS matching is
higher compared with LSH. From our observation, LSH very
often fails in returning the nearest neighbors and, as a result,
the OOS matching pairs sometime appear not meaningful.
Comparing the OOS with and without LIP-IS, the performance
of top-k retrieval is close to each other. LIP+OOS is slightly
better by its ability in pulling NDK to higher rank position.
This is because we set the margin M = 0, in other words, we
require all the 36 features of PCA-SIFT to collide in LIP-IS.
This simple scheme actually removes few more false matches
and makes OOS more stable.

1 -
09

03 W

~07 - M
I~
=2
~ 06 -

: / ——00S
0.5 &

—=—NN
0.4

—&— CH

0.3
1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
Top k

Fig. 6. Performance comparison of different matching algorithms

09 ————
os | /_W
07 L ‘/‘—_"_‘/‘_‘,_‘—a—t——ﬁ—r“"“/‘/‘_‘
=
A~ 06 —e—LIPIS+00S| |
—8— LSH+00S
0.5 —&— CH+00S
04
03
1 3 5 7 9 11 1315 17 19 21 23 25 27 29 30
Top k

Fig. 7. Performance comparison of various filtering schemes with OOS as
matching algorithm

Figure 8 compares our proposed approach (LIP-IS+OOS)
with four other methods. Our approach achieves constantly
better results than others across all k being tested. The results

of NN with different filtering schemes are indeed quite differ-
ent. The combination of NN with LSH is basically poorer than
with color histogram. From our observation, since LSH cannot
always include the nearest neighbors, the matching results of
NN become somewhat random and cause ineffectiveness in
NDK ranking. When NN is integrated with LIP-IS, however,
the performance is significantly better since more nearest
neighbors are returned. This finding empirically proves the
advantage of LIP-IS. The combination of CH+OM shows com-
parable performance to LIP-IS+NN for some k. It outperforms
CH+NN in most top-k retrieval. This also indicates the benefit
of imposing one-to-one constraint in retrieving. Overall, our
proposed approach shows the best performance and is capable
of maintaining a success rate of over 85% for k£ > 3. When
k = 1, almost 80% of NDK pairs are retrieved. Compared
to the recent results in [16] where P(k) =~ 0.6 when k = 1
and P(k) ~ 0.75 when k& = 30, our approach demonstrates
considerably better results although no training is engaged.

09
08

A~ 06 / —e—LIP-IS+00S | ——
05){

——LIP-IS+NN
—&— LSH+NN
—>*— CH+NN
—%—CH+OM

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
Top k

Fig. 8. Performance comparison of the proposed approach (LIP-IS+OOS)
with four other approaches

B. NDK Detection: Precision, Recall and Scalability Testing

NDK detection is indeed a harder problem than NDK
retrieval. First, detection involves hard decision, i.e., true or
false for each comparison in our case. Secondly, the number
of NDK pairs increases exponentially with the number of
keyframes in videos, resulting in a critical demand of speed
and accuracy for each decision. Considering 600 keyframes
with 150 NDK pairs, we have 179700 of candidate pairs for
detection. The chance of success for a random selection of
NDK pair is only 0.0008. Due to heavy computational load, we
conduct experiments on 150 NDK pairs and 18000 non-NDKs
pairs randomly drawn from the 600 keyframes. The chance of
success for a random selection is 0.008. We use precision and
recall defined as follows for performance evaluation,

of correctly detected NDK pairs

Precisi _
recision Total number of detected NDK pairs
Recall — # of correctly detected NDK. pairs
Total number of NDK pairs
of correctly detected NDK and non-NDK pairs
Accuracy =

Total number of keyframe pairs

We randomly choose 20 NDK pairs (positive examples) and
40 non-NDK pairs (negative examples) for SVM training. We
train two SVM classifiers, one with OOS and the other with
NN matching strategy. The training set is selected from TREC
2003 corpus, and is independent of the testing set used in the
experiments. More negative examples are used since the num-
ber of non-NDK pairs is much larger than NDK pairs in real

TABLE III
EXPERIMENTAL RESULTS OF NDK DETECTION
Method LIP-IS LIP-IS 00S NN LSH LSH
+ O00S + NN +00S + NN
Recall 0.8133 0.80 0.82 0.78 0.8125 0.7847
Precision 0.6667 0.481 0.7885 0.4835 0.2532 0.2603
Accuracy 0.9543 0.9185 0.9692 0.9190 0.8086 0.8189

cases. From our empirical finding, allowing more non-NDK
pairs for training will generally lead to better performance.
This is not surprising since the matching patterns of non-NDK
pairs varies a lot compared with NDK pairs, ranging from
just few random matches to large amount of scrambled and
false matches. In practice, more negative examples are required
for effective discrimination. During training, we also attempt
different kernels including polynomial, sigmoid and RBF. The
following experiments are based on RBF kernel which gives
overall the best performance.

Table III shows the performance of six different approaches
for NDK detection, on a dataset with 150 NDK pairs and 1800
non-NDK pairs. Basically the approaches with OOS matching
perform better. The matches found by OOS are robust for
learning and detection. In contrast, the matches by NN are
less reliable and the resulting patterns which include many-to-
one matches are found to be less discriminative for learning.
LIP-IS, again, is shown to be a better filtering scheme than
LSH. A necessary condition for learning and detection is that
the matches need to be less noisy, and the chance of satisfying
this condition is higher when the filtering scheme can retain
as many nearest neighbors as possible. However, LSH fails in
this aspect and gives lower precision. The results of LIP-IS,
although encouraging, is still not as good as with OOS alone.
This is because we set the margin M = 0 for speed reason
and, as a result, LIP-IS+OOS basically retains less matches
than pure OOS. In general, SVM needs more and reliable
matches for effective discrimination and thus OOS exhibits
the best performance.

To further understand the performance of detection on
different types of NDKs, we manually group the 150 NDK
pairs into three types, based on their factors of near-duplicate.
The considered types are: (i) scenes and objects captured
by the same or different cameras probably under slightly
different snapshots of time; (ii) reuse of old materials, either at
frame or region level, with additional editing operations, (iii)
a mixture of types (i) and (ii). In type (ii), there are 25 pairs of
NDKSs which are exactly identical. Table IV summarizes the
performance of OOS and LIP-IS in detecting the three types of
NDK pairs. OOS is able to detect approximately 75% of type
(i) NDKs, 95% of type (ii) NDKs, and 70% of type (iii) NDKs.
Type (ii) NDKs are easier to be detected as the matching
patterns of LIPs are simpler to learn (see figures 11(b)-(c)). In
contrast, type (iii) NDKs, which represents the diverse set of
NDKs populated by types (i) and (ii), are relatively difficult to
detect. Type (i) NDKs present certain aspects of challenge due
to viewpoint and lighting variations. When manual editing, in
particular at the region-level, is further added resulting in type
(iii) NDKs, the number of matched LIP pairs could become
few for effective NDK identification.

TABLE IV
TYPES OF CORRECTLY DETECTED NDK PAIRS.
Type Pairs OOS LIP-IS+O0S
(1) scene 43 32 33
(11) edit 65 61 62
(iii) scene + edit 42 30 27

To test the scalability of detection, we conduct experiments
by incrementally and randomly adding 1800 non-NDK pairs
to the 150 NDK pairs. Figures 9 and 10 show the precision and
accuracy of detection respectively when the number of non-
NDK pairs is increased, but NDK pairs remain the same. In
general, the precision drops as non-NDK pairs increase since
the chance of generating false alarms is higher. As indicated in
Figure 9, although the precision drops, OOS and LIP-IS+O0S
still perform satisfactory. Their precision at 18000 non-NDK
pairs is higher or about the same compared to other approaches
at 9000 non-NDK pairs. The accuracy of detecting NDK and
non-NDK pairs, as shown in Figure 10, is indeed excellent
for OOS and LIP-IS+00S. OOS maintains a detection rate at
the level of 0.975, while LIP-IS+OOS achieves a rate at 0.95
level.

09

0.8 —e—LIP-IS+00S
07 \ —8— LIP-IS+NN
- —4— 008
06 N\ \ —*—NN L
—%—LSH+00S

0.5 \\ —&— LSH+NN
N\ T
02 ¢ M

0.1 ——— —u

Precision

1800 3600 5400 7200 9000 10800 12600 14400 16200 18000
Number of Non-NDK pairs

Fig. 9. Precision of NDK detection by randomly adding 1800 non-NDK
pairs each time

P — s ® + e . *
== — == —=
09
085 P r— X —¥

% KX -3 — v

E 0.8

8 015 —+—00S L
< —=— NN

o
3

—4&—LIP-IS+00S —
—>—LIP-IS+NN
—*—LSH+00S
—@—LSH+NN

4
>
Iy

o
>

54
173
&

1800 3600 5400 7200 9000 10800 12600 14400 16200 18000
Number of non-NDK pairs

Fig. 10.
each time

Accuracy of detection by randomly adding 1800 non-NDK pairs

Figure 11 shows NDK and non-NDK pairs detected by
OOS. The figures 11(a)-(c) depict three typical matching
patterns of NDK pairs which accommodate changes due to
viewpoint, scale, translation, color, illumination and editing
operations. Figure 11(d) shows two NDKs which are acquired
respectively at slightly different time slices and suffered from
motion-blur and illumination change. Overall, our approach
can successfully deal with these four common cases. Fig-
ures 11(e)-(f) show two non-NDK pairs and their matching
patterns. The majority of matches are randomly paired across

Fig. 11. Examples of NDK and non-NDK pairs. (a)-(d): correct positives,
(e)-(f): correct negatives

Fig. 12.

Examples of NDK pairs not being detected

space without following any logical arrangement. Figure 12
also shows several difficult NDK pairs yet to be detected.
These pairs are undergone significant color and lighting
changes. Only few matches are found and our SVM classifier
normally rejects these types of NDK pairs.

C. Speed Efficiency

To verify the efficiency of various approaches, we sample
twenty pairs of NDKs and non-NDKs each for measuring the
average speed of comparing two keyframes. A total of 40
queries is involved in this experiment. Same sets of parameter
setting are used, i.e., &« = 0.87 for the matching strategies,
M = 0 for LIP-IS, and [= 2 and s = 108 for LSH. Table
V shows the average speed of matching one keyframe pair
by different approaches. All methods are implemented with
VC++ 6.0 coding, and tested on a 3GHz Pentium 4 machine
with 512M memory. Color histogram is the fastest since it
involves only two feature vectors, and optimal matching is
the slowest due to the optimization procedure. LIP-IS and
LSH significantly improve the matching speed of OOS by
12.5 and 29 times respectively, while LIP-IS can still maintain
quite comparable matching effectiveness compared to pure
OOS. LSH is about 2.3 times faster than LIP-IS, however its

TABLE V
SPEED EFFICIENCY FOR COMPARING TWO KEYFRAMES
Method CH LIP-IS LIP-IS OOS NN OM LSH LSH
+ O0S + NN +0O0S +NN
0.028 0.027 0.35 0.34 44 0.012 0.010

Time (s) 107°

matching performance is relatively poor in both NDK retrieval
and detection. Our experiment indeed shows that LIP-IS can
be more efficient than LSH when comparing some non-NDK
pairs, simply because LIP-IS is effective in rejecting false
matches, and the candidate size for OOS matching could be
as small as 0 — 5 LIPs in some cases.

In addition to the comparison of approximate search, we
also compare OOS and LIP-IS with two exact search tech-
niques under the support of R-tree [24] and kd-tree [25], [26]
respectively. Due to the fact that our PCA-SIFT descriptors are
in 36 dimensions, R-tree is indeed about two times (0.74 sec)
slower than OOS. A large set of minimum bounding rectangles
(MBRs), overlapping each other, are generated during R-
tree indexing, resulting in a significant search overhead com-
pared with simple linear search. The kd-tree indexing, which
performs hyper-space partitioning without overlap, achieves
2.5 times speed-up (0.14 sec) than OOS. The improvement,
however, is less significant compared to LIP-IS which speeds
up efficiency by 12.5 times.

IX. SUMMARY AND CONCLUSIONS

We have presented the proposed LIP-based approach for
NDK retrieval and detection, with new techniques in matching,
filtering and learning. Several critical issues are discussed,
including (i) how to retain the reliable matches with one-to-one
symmetric constraint, (ii) how to speed up matching while still
ensuring the search quality with LIP-IS as filtering support,
and (iii) how to learn matching patterns for detection. Empiri-
cal findings on TRECVID-2003 video corpus also demonstrate
several interesting facts. First, the LIP based features are
significantly better than the baseline color features for NDK
retrieval. Second, reliable matches are the key factor to the
success of LIP-based NDK identification and OOS matching
indeed fits the requirement nicely. Third, LIP-IS has preference
over LSH in terms of the number of required input parameters
and the capability of approximating nearest neighbors. In the
experiments, LSH basically performs poorer due to the fact
than it often fails in locating the nearest neighbors. As a result,
the matching strategy cannot rely on the candidates to produce
quality matches.

Although encouraging, the current speed of LIP-IS (or even
LSH) still cannot efficiently handle millions of keyframe pairs
in large video corpus such as TRECVID benchmark which
consists of several months of broadcast videos across sources.
Nevertheless, one can still use the cues such as time constraint
and NDK transitivity to restrict and to propagate the search of
NDK pairs, as we have attempted recently in [27], for efficient
linking of news stories. The first cue prunes unnecessary
keyframe comparisons since the chances of finding NDK pairs
become less likely when the recording time between them is
far apart. The second cue can stop the searching of NDK pairs

as earlier as possible by keeping track of the NDK groups
found so far, with the condition that the transitive closure of
NDK pairs holds.

The applications of NDK detection come in naturally in
broadcast domain, where NDKs can be exploited for threading
multi-lingual news stories. Intuitively speaking, the visual-
based near-duplicate detection has no language barrier and is
more straightforward than text-based detection, though both
modalities can complement each other as demonstrated in

[2].

Since NDKs are typically the materials for reminding

the evolution of news events over time and across languages,
NDKSs can form constraints to guide various multimedia tasks
such as news video clustering and summarization.

(1]

(2]
(3]

[4]

[10]

(1]
[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

REFERENCES

S. F. Chang, W. Hsu, L. Kennedy, L. Xie, A. Yanagawa, E. Zavesky,
and D.-Q. Zhang, “Columbia university trecvid-2005 video search and
high-level feature extraction,” in TRECVID, 2005.

X. Wu, C.-W. Ngo, and Q. Li, “Threading and autodocumenting news
videos,” Signal Processing Magazine, Mar 2006.

Y. Ke, R. Suthankar, and L. Huston, “Efficient near-duplicate detection
and sub-image retrieval,” in ACM Multimedia Conference, 2004, pp.
869-876.

D. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal on Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas,
F. Schaffalitzky, T. Kadir, and L. V. Gool, “A comparison of affine region
detectors,” Int. Journal on Computer Vision, vol. 65, no. 1/2, pp. 43-72,
2005.

J. Sivic and A. Zisserman, “Video google: A text retrieval approach to
object matching in videos,” in IEEE Intl. Conf. on Computer Vision,
2003.

K. Mikolajczyk and C. Schmid, “A performance evaluation of local
descritors,” IEEE Trans. on Pattern Analysis and Machine Intelligence,
vol. 27, no. 10, pp. 1615-1630, 2005.

Y. Ke and R. Sukthankar, “PCA-SIFT: A more distinctive representation
for local image descriptors,” in Computer Vision and Pattern Recogni-
tion, vol. 2, 2004, pp. 506-513.

E. Chang, J. Wang, C. Li, and G. Wiederhold, “Rime: A replicated image
detector for the world wide web,” in Proceeding of SPIE Multimedia
Storage and Archiving Systems III, 1998.

K. Kashino, T. Kurozumi, and H. Murase, “A quick search method for
audio and video signals based on histogram pruning,” IEEE Trans. on
Multimedia, vol. 5, no. 3, 2003.

J. Haitsma and T. Kalker, “A highly robust audio fingerprinting system,”
in Int. Conf. Music Information Retrieval, 2002.

J. S. Seo, J. Haitsma, T. Kalker, and C. D. Yoo, “A robust image fin-
gerprinting system using Randon transform,” Signal Processing: Image
Communication, vol. 19, pp. 325-339, 2004.

S. C. C. . A. Zakhor, “Fast similarity search and clustering of video
sequences on the world-wide-web,” IEEE Trans. on Multimedia, vol. 7,
no. 3, pp. 524-537, 2004.

TREC Video Retrieval Evaluation (TRECVID),
nlpir.nist.gov/projects/trecvidy.

P. Duygulu, J.-Y. Pan, and D. A. Forsyth, “Towards auto-documentary:
Tracking the evolution of news stories,” in ACM Multimedia Conference,
2004, pp. 820-827.

D.-Q. Zhang and S.-F. Chang, “Detecting image near-duplicate by
stochastic attributed relational graph matching with learning,” in ACM
Multimedia Conference, 2004, pp. 877-884.

S. Smith, “A new class of corner finder,” in British Machine Vision
Conf., 1992, pp. 139-148.

M. A. Fischler and R. C. Bolles, “Random sample consensus: A
paradigm for model fitting with applications to image analysis and
automated cartography,” Communications of the ACM, vol. 24, no. 6,
pp- 381-393, 1981.

P. I. . R. M. A. Gionis, “Similarity search in high dimensions via
hashing,” in Int. Conf. on Very Large Data Bases, 1999, pp. 518-529.
Y. Rubner, C. Tomasi, and L. Guibas, “The earth mover’s distance as
a metric for image retrieval,” Int. Journal of Computer Vision, vol. 40,
no. 2, pp. 99-121, 2000.

in http://www-

[21]

[22]

[23]

[24]
[25]

[26]
[27]

A. Schrijver, Combinatorial Optimization: Polyhedra and Efficiency.
Berlin: Springer, vol. A, pp. 267-290, 2003.

B. Georgescu, 1. Shimshoni, and P. Meer, “Mean shift based clustering
in high dimensions: A texture classification example,” in Int. Conf. on
Computer Vision, 2003.

D. P. Bertsekas, “Auction algorithms for network flow problems: A
tutorial introduction,” Computational Optimization and Applications,
vol. 1, pp. 7-66, 1992.

A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of ACM SIGMOD, 1984, pp. 47-57.

J. L. Bentley, “Multidimensional binary search trees used for associative
searching,” Commun. ACM, vol. 18, no. 9, pp. 509-517, 1975.

S. Arya and D. Mount, in fip://ftp.cs.umd.edu/pub/faculty/mount/ANN/.
C.-W. Ngo, W.-L. Zhao, and Y.-G. Jiang, “Fast tracking of near-duplicate
keyframes in broadcast domain with transitivity propagation,” in ACM
Multimedia Conference, 2006.

Wan-Lei Zhao received his M.S. and B.C. degrees
in Department of Computer Science and Engineer-
ing from Yunnan University in 2006 and 2002 re-
spectively. He was with Software Institute, Chinese
Academy of Science from Oct.2003 to Oct.2004
as an exchange student. He is currently a research
assistant in Department of Computer Science, City
University of Hong Kong. His research interests
include video computing and manifold learning.

PLACE
PHOTO
HERE

Chong-Wah Ngo (M’02) received his Ph.D in
Computer Science from the Hong Kong University
of Science & Technology in 2000. He received his
MSc and BSc, both in Computer Engineering, from
Nanyang Technological University of Singapore.
Before joining City University of Hong Kong in
2002, he was with Beckman Institute of University
of Illinois in Urbana-Champaign. He was also a
visiting researcher of Microsoft Research Asia in
2002. His research interests include video computing

PLACE
PHOTO
HERE

and multimedia information retrieval.

Hung-Khoon Tan received his MPhil in Com-
puter Science from City University of Hong Kong,
M.Eng in Microelectronics from Multimedia Uni-
versity (MMU) and B.Eng in Computer Engineering
from University Technology of Malaysia (UTM). He
was a test development and senior design engineer
in Altera’s R&D Center in Penang, Malaysia from
1999 to 2004. His research interests include mul-
timedia content analysis, data mining and pattern
recognition.

PLACE
PHOTO
HERE

Xiao Wu received the B.Eng. and M.S. degrees in
computer science from Yunnan University in 1999
and 2002 respectively. He is a Ph.D. candidate in
the Department of Computer Science at the City
University of Hong Kong. Currently, he is at the
School of Computer Science, Carnegie Mellon Uni-
versity, as a visiting scholar. From 2003 to 2004,
he was with the Department of Computer Science
of the City University of Hong Kong as a research
assistant. His research interests include multimedia

PLACE
PHOTO
HERE

information retrieval and video processing.

