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Dynamic NN-Descent: An Efficient k-NN
Graph Construction Method

Jie-Feng Wang, Wan-Lei Zhao*, Shihai Xiao, Jiajie Yao, Xuecang Zhang

Abstract—As a classic k-NN graph construction method, NN-
Descent has been adopted in various applications for its simplic-
ity, genericness, and efficiency. However, its memory consumption
is high due to the employment of two extra supporting graph
structures. In this paper, a novel k-NN graph construction
method is proposed. Similar to NN-Descent, the k-NN graph is
constructed by doing cross-matching continuously on the sampled
neighbors on each neighborhood. Whereas different from NN-
Descent, the cross-matching is undertaken directly on the k-NN
graph under construction. It makes the extra graph structures
adopted to support the cross-matching no longer necessary.
Moreover, no synchronization between different threads is needed
within one iteration. The high-quality graph is constructed at the
high-speed efficiency and considerably better memory efficiency
over NN-Descent on both the multi-thread CPU and the GPU.

Index Terms—k-NN Graph, Dynamic NN-Descent, NN-
Descent, GPU

I. INTRODUCTION

Given a dataset C = {x|x ∈ Rd}, the k-nearest neighbor
(k-NN) graph refers to the data structure that keeps the top-k
nearest neighbors for each sample from the dataset. Typically,
given k-NN graph G built from C and sample xi ∈ C, G[i]
returns the indice of top-k nearest neighbors of sample xi.
It is the fundamental data structure for a wide variety of
applications, such as vector database, multimedia information
retrieval, recommendation system, deep metric learning, and
classification [1]–[5]. When it is built in a brute-force way, the
time complexity is O(d·n2), where d is the dimension and n
is the size of the dataset. In practice, n could reach as much
as billion level or even bigger. As a result, the computation
cost is prohibitively high when the graph is built exhaustively.

Intuitively, given an efficient NN search method is available,
i.e. HNSW [6], the k-NN graph could be built by launching a
query for each sample on the indexing structure built upon
the whole set. Whereas, the time cost for constructing a
HNSW graph is already much higher than several state-of-
the-art k-NN graph construction methods [7], [8]. Conversely,
the construction of k-NN graph is the prerequisite of the NN
search in recent NN search methods [1], [9], [10]. Recently,
an interesting attempt has been made in [11] to construct
the k-NN graph incrementally by querying against the k-NN
graph under construction. Although encouraging performance
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is achieved, its efficiency is still inferior to the offline con-
struction method [7], particularly in the multi-thread context.

In face of the data in large-scale and high dimension, recent
studies no longer attempt to build k-NN graph with 100%
quality. Instead, many efforts [2], [7], [12], [13] have been
made to explore efficient methods to build an approximate
k-NN graph. In general, there are two major categories. In
the first type of methods, the k-NN graph is constructed
by a divide-and-conquer strategy [2], [8], [12], [13]. Given
dataset C, it is divided into small subsets. The k-NN graph
is constructed for each small subset. Thereafter, such small
k-NN graphs are unioned into one in one way or another.
The most attractive advantage of this type of method comes
from its efficiency. However, the inductive bias about the data
distribution or the distance metrics defined over the data makes
such methods no longer a generic solution for the k-NN graph
construction problem.

Alternatively, the NN-Descent algorithm proposed in [7]
builds the k-NN graph by an iterative procedure. No dataset
division strategy is adopted. The construction starts from a
random k-NN graph, which is of very low quality. The graph
is refined iteratively by updating the graph with the closer
neighbors produced by cross-matching, which is called “local-
join”. The local-join is performed within each intermediate
k-NN neighborhood. The refining process is motivated by
the observation “neighbor’s neighbor is neighbor”, which
is largely true due to the low intrinsic dimensionality for
many real-world data. For its simplicity, effectiveness, and
genericness to the various distance metrics, it remains the most
popular k-NN graph construction method. In the recent k-NN
construction competition 2023 sponsored by SIGMOD1, the
methods from the top-1 and the top-3 winners are essentially
built upon NN-Descent.

Although NN-Descent is already very efficient, its extra
memory consumption during the iteration is quite high, which
makes it hard to deploy to a large-scale graph construction
task or in a context where the memory resources are precious.
According to the method, in addition to the k-NN graph under
construction, another two graph structures are maintained to
hold the neighbors and the reverse neighbors for each sample.
They are used to support the local-join. The size of these
two graphs is on the same scale as the k-NN graph. For this
reason, the extra memory consumption becomes significant
given the data size n increases to the million level. Moreover,
its refining procedure cannot run at full speed under the multi-

1https://2023.sigmod.org/sigmod awards.shtml
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thread context due to the required synchronization between
different threads within one iteration.

In this paper, a dynamic NN-Descent algorithm for efficient
k-NN graph construction is proposed. Similar to NN-Descent,
the graph construction starts from a random k-NN graph and
has been refined by the local-join on the k-NN neighborhood
of each sample. However, different from NN-Descent, the
extra two graph structures to support the local-join have been
reduced to an incomplete graph. This graph structure only
keeps part of the reverse neighbors of each sample. This leads
to more than 80% of extra memory save-up while without
any impairment on the graph quality. The contributions of this
paper are twofold.

• A dynamic NN-Descent algorithm for k-NN graph con-
struction is presented. Compared to the classic NN-
Descent algorithm, the way that we collect the neighbors
for the local-join in the next round is essentially different.
Instead of allocating the extra graph to hold the old and
new neighbors, the neighbors are collected right before
the local-join for each node. This leads to considerably
lower memory consumption as well as the high-speed
efficiency when it runs in multiple-thread.

• The GPU-based dynamic NN-Descent is also presented.
It outperforms the most efficient GPU-based k-NN graph
construction methods in the literature while requiring
much less extra GPU memory. Typically, the high quality
k-NN graph for a high dimensional 10-million dataset can
be constructed in 20 seconds.

The remainder of this paper is organized as follows. In
Section II, the representative k-NN graph construction meth-
ods in the literature, particularly NN-Descent are reviewed.
Section III presents the proposed Dynamic NN-Descent. In
Section IV, a comprehensive study about the performance
of Dynamic NN-Descent on both single-thread and multiple-
thread contexts, as well as on GPU is conducted. Section V
concludes the paper.

II. RELATED WORK

The k-NN graph construction methods in the literature can
be broadly categorized into two groups. The first type of
method follows the divide-and-conquer strategy [2], [8], [12],
[13]. In general, three steps are involved in this type of method.
In the first step, the dataset is divided into small subsets. In
the second step, the sub k-NN graphs are constructed for each
subset. Finally, the sub-k-NN graphs are merged into one.
Usually, a post-processing step is adopted to further refine
the graph quality. For the second type of methods [7], [11],
they essentially perform NN search on the k-NN graph under
construction in an NN-Descent manner. In the remainder of
this section, brief reviews about these two types k-NN graph
construction are presented.

A. Methods based on Divide-and-Conquer

Different division strategies have been adopted by divide-
and-conquer methods. In [8], [12], the dataset is recursively
divided into small subsets with equal size. To facilitate the

afterward sub-graph merging, overlapping between the bi-
sected subsets is allowed in [12]. The complete graph is
the union of sub-graphs constructed for the small subsets.
An NN-Descent [7]-like procedure is adopted to refine the
graph further. While in [2], [13], the dataset is divided into
small subsets for several rounds. In one round, the overlapping
between different subsets is not allowed. For each round, the
sub-graph is built for each small subset. As a result, several
“base” approximate neighborhoods [2] are produced for one
sample. The merge of these neighborhoods for one sample
results in a neighborhood for each sample of higher quality.
Similar to [8], [12], an NN-Descent [7]-like procedure is
also adopted to enhance the graph quality after the merging
of sub-graphs. The pipelines in [13] and [2] are similar,
the major difference lies in their division strategies. Method
in [2] divides the dataset by a random partition tree, while
method [13] partitions the dataset by random projection of
the hash codes, which are derived from the raw vectors.
These methods are very efficient according to the performance
reported in [8]. Nevertheless, the assumption (or restriction)
about the distance metrics is necessary to design an appropriate
partition strategy. For this reason, one cannot expect that they
are still generic solutions for the k-NN graph construction
problem.

B. NN-Descent and its Variants
Different from the first type of method, no dataset division is

adopted in the second type of method. The graph construction
fully relies upon an NN-Descent procedure. Namely, neighbors
find each other by comparing with samples living in the same
intermediate neighborhood. In this way, samples are descent
to their true neighbors gradually.

In the algorithm NN-Descent [7], k-NN graph construction
starts from a randomly generated k-NN graph. Its iterative
procedure refines this k-NN graph gradually. On one iteration,
neighbors in a neighborhood G[i] are compared to each other,
which is called the local-join step. This operation is motivated
by the observation that “a neighbor’s neighbor is likely to
be a neighbor”. New edges are produced after the local-join.
The new edges are in turn used to update the graph. As only
shorter edges than the current ones are inserted into the graph,
it is guaranteed that the graph quality monotonically increases.
Obviously, this basic procedure can be optimized further. For
instance, there is no need to compare the old neighbors within
the old neighborhood, which are referred to the neighbors
already in the neighborhood before the previous iteration.
Moreover, there is no need to perform pair-wise comparisons
between all the neighbors. Another step called “sampling” is
introduced in one iteration. The iterative procedure of NN-
Descent can be summarized as follows.

• Step-1. Sampling For each node i, only a small portion
of new/old close neighbors from k-NN graph G[i] and
its reverse neighbors are collected. Since “a neighbor’s
neighbor is likely to be a neighbor”, the afterward local-
join between these sampled close neighbors will produce
shorter edges, which are used to update graph G.

• Step-2. Local-join With the sampled neighbors, local-
join calculates the distance between old-new pairs and
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new-new pairs. The produced new edges are inserted into
the corresponding neighborhood in graph G when they
are shorter than the kept edges.

It is possible to sample all the neighbors from G[i] to undertake
the local-join. Due to the fixed small size of a neighborhood,
the produced long edges by the local-join will be most likely
squeezed out by the shorter edges which are produced by
local-join between the close neighbors. For efficiency, only the
close neighbors and the close reverse neighbors are sampled
in the first step.

The convergence of NN-Descent has been proved in [14].
For the sake of efficiency, it can be terminated early when
there are only very few updates on the graph [7]. In [11],
each sample is treated as an incoming query to query against
the k-NN graph under construction. This method is good for
datasets of growing size. However, it cannot be as efficient as
NN-Descent in particular under the multi-threads environment.
NN-Descent is able to build a high-quality approximate k-NN
graph in only a few iterations. Its implementation is available
on Github2. Recently, the GPU-based NN-Descent is also
proposed [15]. It is 10 times faster than the CPU version
due to the high parallelization of GPU-based computing.
Unfortunately, its memory consumption remains high.

In this paper, a novel way to undertake the local-join on
the neighborhood of each sample is proposed. Instead of
collecting the neighbors and reverse neighbors after one round
of iteration, the neighbors are collected directly from the k-NN
graph G that is under construction. No extra graph structure is
needed to hold the collected neighbors of each sample. As a
result, an incomplete list of reverse neighbors of each sample
will be kept. For this reason, compared to the classic NN-
Descent, local-join with the reverse neighbors in our algorithm
is fulfilled in consecutive rounds. Such kind of strategy breaks
the boundary between different rounds. It, therefore, makes
the synchronization between different threads on one round
iteration unnecessary, leading to a considerably higher speed in
a multi-thread context. Moreover, such an advantage in speed
efficiency over the classic NN-Descent becomes more apparent
when more threads are used.

III. DYNAMIC NN-DESCENT

In NN-Descent, there are two separate steps in each itera-
tion. Namely, the first step collects the new/old neighbors from
the neighborhood of each node. The second step performs
local-join on old-new and new-new pairs of each node. To
support the iteration, it is necessary to maintain the extra
graph structure to hold the old and new neighbors for each
node. Let’s call this graph structure as H. In the meantime,
the reverse old and new neighbors of each node should be held
on a similar structure as well. Let’s call this graph structure
as R. Figure 1(b) shows the major data structures that are
allocated for the graph in Figure 1(a). As shown in the figure,
another two graph structures H and R are allocated in addition
to G that is under construction. Since the size of these two
graph structures is on the same level as the graph G, the extra
memory consumption grows linearly with the size of the data.

2https://github.com/aaalgo/kgraph

In this section, we explore a novel way to undertake the NN-
Descent iteration to reduce its extra memory consumption.

A. k-NN Graph Construction

Intuitively, the graph structure H appears unnecessary since
the list of old and new neighbors of each node is already
maintained by G. However, H differs from G due to the
iteration process of NN-Descent. Graph G is dynamically
updated with the new edges produced by the local-join, while
graph H is static, being renewed with the resulting G after
every round of NN-Descent iteration. Both H and G maintain
n neighborhoods, guiding the iteration on which group of
samples the local-join should be performed. If we sample
neighbors from G[i] instead of using H[i], the new closer
neighbors will join in the local-join right after they have
been inserted. This is actually beneficial to the graph quality,
according to the principle “a neighbor’s neighbor is likely to
be a neighbor”. It is therefore feasible to perform the local-
join directly on the neighborhoods of graph G. Moreover, the
neighborhood of G[i] is sampled right before a thread is going
to perform local-join on G[i]. Only a cache is needed to keep
the sampled neighbors for one thread. Therefore, the memory
consumption induced by the introduction of H is saved.

Nevertheless, due to the absence of H, not all the reverse
neighbors for one node are available. It is therefore impossible
to sample from a complete reverse neighbor list for node i.
Compared to the original NN-Descent, some of the reverse
neighbors will not cross-match with neighbors being squeezed
out in this round. Instead, they will join in the next round
local-join. As a result, sufficient cross-matches between close
neighbors are still performed in each neighborhood, which
guarantees the high graph quality. In the following, we show
how the procedure is undertaken when the sampling is per-
formed directly on the dynamically changing graph G.

Given an arbitrary node i, its new/old neighbors are sampled
from its current neighborhood G[i], namely O ← G[i].old,
and N ← G[i].new. Given a ∈ O, the entry for a in the
reverse graph is updated by R[a].old← R[a].old∪i. Similarly,
R[a].new ← R[a].new ∪ i when a is in N . In addition, the
corresponding reverse old and new neighbors are joined into
O and N respectively (shown in Eqn. 1).

O ←O ∪ R[i].old

N ←N ∪ R[i].new
(1)

The local-join is performed between samples within N and
between O and N . After the local-join is fulfilled on G[i], the
reverse neighbor entry, namely R[i].old and R[i].new are set
to empty. Compared to NN-Descent, it is clear to see both G
and R are under update consistently.

Given i is the current node, only samples that have been
visited before i are collected in its reverse neighborhood.
These reverse neighbors will take part in the local-join of
i in this round. After the local-join on G[i], R[i] is set to
empty. As the iteration continues, other samples, e.g. b are
joined into R[i] when i is collected during the sampling on b’s
neighborhood. The right side of Figure 1(c) illustrates the R
in our method. Given node-3 in the figure is the visiting node,
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Fig. 1. The major data structures that are maintained for k-NN graph construction in NN-Descent and Dynamic NN-Descent. New and old neighbors are
colored in yellow and blue, respectively. Figure (a) shows a 3-NN graph with six nodes. Figure (b) shows three major structures in NN-Descent. Namely, they
are k-NN graph G under construction, graph H that keeps the sampled old/new neighbors for each node, and the reverse graph R for H. Figure (c) shows
the data structures adopted in Dynamic NN-Descent. In contrast to NN-Descent, graph H is reduced to a dynamic cache that only maintains the sampled
neighbors for the node under visit. Moreover, only an incomplete reverse graph R is maintained.

caches O and N keep the sampled old and new neighbors
from G[3] respectively. Compared to R in Figure 1(b), node-
4 is not in the list of R[3] because 4 is not yet visited at this
moment. So it will not join in the local-join of R[3] of this
round. Node-4 will be added to R[3] as the reverse neighbor
of node-3 after G[4] has been visited. It will join in the local-
join of R[3] in the next round. Compared to NN-Descent,
only an incomplete reverse graph R is maintained. Moreover,
graph H is replaced by two caches O and N . As a result,
significant memory consumption is saved. As verified in the
later experiment, no significant graph quality degradation is
observed when the local-join is performed on the samples from
the dynamic neighborhood. Additionally, because the number
of samples that take part in the local-join is similar to the
original NN-Descent, our method shows similar efficiency as
the original NN-Descent.

Since the local-join is performed on the dynamic neighbor-
hoods of G and R, this revised algorithm is called Dynamic
NN-Descent. The full algorithm that runs in multiple threads
is presented in Algorithm 1. As seen from the algorithm, given
a sample i, we sample its old neighbors and new neighbors
from G[i] and push them to O and N respectively (Lines 6–
12). Current i’s reverse neighbors R[i].old and R[i].new are
concatenated with corresponding new neighbors in O and N
shown in Lines 14–15. Thereafter, R[i].old and R[i].new are
set to be empty and ready to collect i’s reverse neighbors in
the next iteration processes (Lines 16–17). The local join and
the aftermath graph update are performed in Lines 18–22.

Discussion There are three major differences from the
classic NN-Descent. Firstly, Dynamic NN-Descent performs
sampling directly on the graph under construction, whose NN
lists are updated dynamically. As a result, the sampling on
such a dynamic neighborhood reflects the real neighborhood
structure of one node at the moment of the local-join. In
contrast, the neighborhood that is maintained in H[i] is static
until the update in the next round of iteration. As the neighbors

are collected on-the-fly, there is no need to maintain graph
structure H. The memory consumption in keeping the sampled
neighbors becomes minor. Secondly, Dynamic NN-Descent
samples on an incomplete reverse neighbor graph R[i]. As
a result, the local-join with the reverse neighbors are fulfilled
in consecutive rounds instead of one. Another benefit is that
the expected memory consumption by R is around 50% less
than that of NN-Descent. Furthermore, there is no egg-chicken
loop between k-NN graph G and the two supporting graphs
H and R. In contrast to two nested loops in NN-Descent,
there is only one loop in Algorithm 1. As a result, no
synchronization between different local-joins within one round
is needed, which turns out to be more friendly to the algorithm
parallelization.

Space Complexity and Time Complexity The space
complexity of the Dynamic NN-Descent and NN-Descent
algorithms is O((k+2 ·smpN) ·n) and O((k+4 ·smpN) ·n)
respectively, where k is the size of the neighborhood and
smpN is the sampling size. The space complexity of the two
algorithms is linear to the size of the dataset n. However,
the Dynamic NN-Descent is lower than that of NN-Descent
by a factor 2 · smpN . Unlike most of the algorithms, the
time complexity of NN-Descent and Dynamic NN-Descent
varies from one dataset to another. It is closely related to the
intrinsic dimension of the data. For this reason, an empirical
time complexity analysis of the two algorithms is presented in
Section IV-E.

B. GPU-based Dynamic NN-Descent

We also implemented the GPU-based Dynamic NN-
Descent. Different from [15], Algorithm 1 is written into one
kernel in CUDA C++. The GPU version largely follows the
steps presented in Algorithm 1. The major difference lies in
Line 18 of Algorithm 1. The local joins between O and N and
within N are realized by matrix-multiplication-like distance
calculation, which is very efficient on GPU.
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Algorithm 1 Dynamic NN-Descent
Require: dataset C, distance metric m, k-NN list size K,

num. of sampled number smpN , num. of iterations iterN
Ensure: k-NN graph G

1: iter ← 0
2: Generate a random k-NN graph
3: for iter < (|C| · iterN) do
4: i← iter % |C|
5: /* Sampling */
6: O ← sample 3 · smpN items in G[i] with a false flag
7: N ← sample smpN items in G[i] with a true flag
8: if u ∈ O && R[u].old.size() < smpN then
9: R[u].old← R[u].old ∪ i

10: end if
11: if u ∈ N && R[u].new.size() < smpN then
12: R[u].new ← R[u].new ∪ i
13: end if
14: Mark sampled new items in G[i] as false
15: O ← O ∪ R[i].old
16: N ← N ∪ R[i].new
17: R[i].old← ϕ /*clear the list*/
18: R[i].new ← ϕ
19: /*Local-join*/
20: for u1, u2 ∈ N , u1 < u2 or u1 ∈ N , u2 ∈ O do
21: dist ← m(u1, u2)
22: Try to insert ⟨u2, dist, true⟩ to G[u1]
23: Try to insert ⟨u1, dist, true⟩ to G[u2]
24: end for
25: end for
26: return G

Due to the limited space of shared memory on the Stream-
ing Multiprocessor (SM), i.e. only 100KB for each SM on
RTX4090, the matrix-multiplication-like distance calculation
is organized in a tiled way. Only a small portion of vectors
are loaded to the shared memory each time. The complete
distances are accumulated after several phases of calculation.
Figure 2 illustrates a mini example, where the sizes of O
and N are 4, the data dimension d = 4, and the tiled size
is 2 × 2. In each tiled block, the calculation is split into
2 phases. Each phase fetches a 2 × 2 small block from A
and B, then each thread calculates one dimension’s square of
their difference. The final distance matrix of a tiled block is
accumulated through all phases.

IV. EXPERIMENTS

A. Experiment Setup

In this section, the performance of Dynamic NN-Descent
is studied on both CPU and GPU, in comparison mainly
to NN-Descent and its variants. In the empirical study, we
mainly consider the k-NN graph quality, construction time, and
memory consumption. For CPU-based methods, our method
is compared with classic NN-Descent and EFANNA [8]. For
GPU-based methods, we compare with GNND3 from [15],

3https://github.com/RayWang96/GPU KNNG
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Fig. 2. The tiled distance calculation in the shared memory.

GGNN [16] as well as the package RAFT4 recently released
by NVIDIA.

TABLE I
SUMMARY ON DATASETS USED FOR EVALUATION

Name d LID m(·,·) Data Size
SIFT 128 15.6 L2 104 ∼ 108

DEEP 96 15.9 L2 104 ∼ 108

T2I 200 20.9/15.5 IP 106

SPACEV 100 23.2 L2 106

GIST 960 25.9 L2 106

TURING 100 28.5 L2 106

Six real-world datasets5 are adopted in the evaluation. The
data scale ranges from 1-million level to 100-million level.
The brief information about these datasets is summarized in
Table I. As shown in the table, our evaluation covers tradi-
tional image feature [17], [18], deep image features [19], text
features [20], and cross-model features (namely T2I). They are
all dense and in high dimensions. Different distance measures
are adopted for different datasets. We use local intrinsic
dimensionality [21] (LID shown in the 3rd column) to measure
the difficulty of a dataset. Generally, it is more challenging
to build a high-quality k-NN graph on datasets with high
intrinsic dimensionality. The top-10 recall (Recall@10) on
each dataset is studied under different metrics such as L2 and
Inner Product. Given a function R(i, k) returns the number of
true-positive neighbors at top-k NN list of sample i, the recall
at top-k on the whole set is given as Recall@k =

∑n
i=1 R(i,k)

n×k .
For CPU-based methods, all the experiments are carried out

on a machine with two Intel(R) Xeon(R) Gold 6133 CPU
(2.50GHz) and 256 GB of memory. All the codes of different
methods considered in this study are compiled by GCC 11.4.0
with -Ofast compile option.

B. Memory Efficiency and k-NN Graph Quality

In this experiment, the memory efficiency and the k-NN
graph quality of Dynamic NN-Descent are studied in com-
parison to NN-Descent. The iterN is fixed as 10. In order to
produce k-NN Graphs with different qualities, the parameter

4https://github.com/rapidsai/raft
5Datasets except GIST are available at https://big-ann-benchmarks.com

https://github.com/RayWang96/GPU_KNNG
https://github.com/rapidsai/raft
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Fig. 3. Recall@10 versus graph construction time, and Recall@10 versus
extra memory consumption by Dynamic NN-Descent and NN-Descent on six
1-million datasets. #Threads=80.

K varies from 16 to 200, and the smpN varies from 16 to 32
for both Dynamic NN-Descent and NN-Descent. Typically,
a larger K or smpN builds a better k-NN graph, while
taking more memory and construction time. Under the same
parameter settings, Dynamic NN-Descent and NN-Descent
build k-NN graphs of almost the same quality. The number
of threads is fixed to 80 for both methods. For each dataset,
the variations of graph quality (given as Recall@10) and the
corresponding Construction time are plotted in Figure 3 for
two methods. Accordingly, the variations in Extra Memory
Consumption6 are plotted in the figure as well.

As shown from Figure 3, the memory consumption of NN-
Descent increases steadily when we build k-NN graph in
higher quality. For a million-level dataset, the extra memory
consumption is as much as more than 1.2G Bytes. In contrast,
the extra memory consumption from Dynamic NN-Descent
remains very low across different configurations. In general,
6.7 times extra memories and 1.2 ∼ 1.7 times total memories
are required for NN-Descent to build the k-NN graph at
the similar quality and time costs as Dynamic NN-Descent.
We also compared Dynamic NN-Descent with EFANNA [8].

6The memories to hold the raw data and the k-NN graph are not counted.

 0

 20

 40

 60

 80

 100

 120

32 64 128 256 512

T
im

e 
C

os
ts

 (
se

co
nd

s)

K

NN-Descent
Dynamic NND

19.33
26.78

36.45

58.42

102.09

12.59
17.85

25.15

38.12

77.52

(a) SIFT1M

 0

 200

 400

 600

 800

 1000

 1200

 1400

32 64 128 256 512

T
im

e 
C

os
ts

 (
se

co
nd

s)

K

NN-Descent
Dynamic NND

229.02
306.84

420.20

694.52

1220.61

139.70
190.77

269.27

441.55

896.97

(b) SIFT10M

 0

 20

 40

 60

 80

 100

 120

 140

 160

32 64 128 256 512

T
im

e 
C

os
ts

 (
se

co
nd

s)
K

NN-Descent
Dynamic NND

19.02
29.83

40.34

65.14

123.32

11.59
17.85

27.61

46.18

94.32

(c) DEEP1M

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

32 64 128 256 512

T
im

e 
C

os
ts

 (
se

co
nd

s)

K

NN-Descent
Dynamic NND

224.35
340.52

489.83

872.60

1428.18

128.96
204.69

329.19

535.92

1122.55

(d) DEEP10M
Fig. 4. Time efficiency under different Ks, iterN=10, #Thread=80. The k-NN
graph quality (Recall@10) of SIFT1M, SIFT10M, DEEP1M, and DEEP10M
are maintained at 0.99, 0.98, 0.99, and 0.99 respectively for both algorithms.

The graph quality for our method and EFANNA is fixed to
Recall@10 = 0.99 for six million-scale datasets. Compared to
our method, EFANNA takes 2.6 ∼ 4.3 times more time and
1.9 ∼ 3.7 times more memory.

C. Scalability Tests

In this section, the scalability of Dynamic NN-Descent is
studied when we vary the size of k-NN graph, the number of
threads, and the data size. The performance from NN-Descent
is treated as the comparison baseline.

In the first experiment, k-NN graphs in different neighbor-
hood sizes are built by Dynamic NN-Descent and NN-Descent.
K varies from 32 to 512. The other parameters are fixed to
the same for them. Such that the graph quality from the two
methods is similar. Figure 4 shows the time costs of two
methods on SIFT1M, SIFT10M, DEEP1M, and DEEP10M.

As shown from the figure, Dynamic NN-Descent is con-
siderably faster than NN-Descent across different Ks. The
efficiency is more significant when K is small. In practice,
K is in the range [40, 200] [1], [9], [10], [22]. Our method is
30% faster than NN-Descent in the range.

In the second test, the performance trend of Dynamic NN-
Descent is studied when it runs on a different number of
threads. In the test, the number of threads varies from 1 to
64, while the other parameters are fixed. The construction time
costs on four datasets are shown in Figure 5. As seen from the
figure, Dynamic NN-Descent shows much higher efficiency
over NN-Descent as more threads are used. This is largely
attributed to its highly parallelizable procedure. Compared to
NN-Descent, the synchronization on the inner-loop iteration
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Fig. 5. Time efficiency with different num. of threads, K=100, iterN=10.
The k-NN graph quality (Recall@10) for SIFT1M, SIFT10M, DEEP1M, and
DEEP10M are maintained at 0.99, 0.98, 0.99, and 0.98 respectively for both
algorithms.

is no longer required. Since there is no boundary between
consecutive iterations, the barrier to high parallelization is
broken. In the last scalability test, the time efficiency of

 0.1

 1

 10

 100

 1000

 10000

 100000

104 105 106 107 108

T
im

e 
C

os
ts

 (
se

co
nd

s)

Data Size

NN-Descent
Dynamic NND

0.23

2.74

32.25

363.44

3082.20

0.15

1.82

21.02

229.07

2027.23

(a) SIFT

 0.1

 1

 10

 100

 1000

 10000

104 105 106 107 108

T
im

e 
C

os
ts

 (
se

co
nd

s)

Data Size

NN-Descent
Dynamic NND

0.24

2.39

30.15

358.10

0.17

1.79

20.93

243.58

2817.76

(b) DEEP
Fig. 6. Time efficiency under different data sizes, #Thread=80, K=100,
iterN=10. For the SIFT and DEEP datasets, the smpN are set to 16 and
24 respectively. The k-NN graph quality (Recall@10) for SIFT and DEEP
decreases from 0.99 to 0.90 and 0.96 respectively as the data size increases
for both NN-Descent and Dynamic NN-Descent.

Dynamic NN-Descent is reported on SIFT and DEEP datasets,
when their data size varies from 104 to 108. The parameters
for Dynamic NN-Descent and NN-Descent are fixed to the
same. The result on DEEP 100M is not reported for NN-
Descent as its required memory is beyond the memory support
of our machine. The time efficiency against the size of data
is shown in Figure 6. Our method shows a higher percentage
of efficiency over NN-Descent as the data size increases. This

TABLE II
PERFORMANCE EVALUATION ON GPU-BASED k-NN GRAPH

CONSTRUCTION. K=64, iterN=6 FOR DYNAMIC NN-DESCENT, GNND
AND RAFT.

TIME (Seconds)
Dynamic NND GNND RAFT GGNN

SIFT1M 2.198 2.274 2.958 4.664
SIFT10M 24.463 25.474 29.838 68.337
DEEP1M 1.909 1.949 2.937 5.233
DEEP10M 20.892 21.833 30.923 64.631

Recall@10
Dynamic NND GNND RAFT GGNN

SIFT1M 0.994 0.994 0.990 0.993
SIFT10M 0.978 0.984 0.976 0.978
DEEP1M 0.990 0.989 0.985 0.990
DEEP10M 0.956 0.969 0.958 0.967

GPU Memory (MB)
Dynamic NND GNND RAFT GGNN

SIFT1M 1,534 1,786 492 730
SIFT10M 14,892 17,412 4,886 6,828
DEEP1M 1,412 1,664 370 606
DEEP10M 13,672 16,192 3,668 5,604

is again largely attributed to the high parallelization nature of
our method.

D. Performance on the GPU

In this experiment, GPU-based Dynamic NN-Descent is
compared with GNND, RAFT, and GGNN. Among them, both
GNND and RAFT are the GPU version of NN-Descent. RAFT
differs from GNND in the arrangement of memory. The k-NN
graph G, the supporting graphs H and R are mainly maintained
in the main memory for RAFT. While GGNN builds the k-NN
graph on GPU in a divide-and-conquer strategy. For GGNN,
the parameters are loyal to its original implementation. The
simulations are conducted on NVIDIA RTX4090.

The construction time costs, k-NN graph quality, and the
GPU memory consumption (including memory consumption
for raw vectors and the k-NN graph) are reported on Table II
for four datasets. As shown in the table, Dynamic NN-Descent
is the most efficient method. The construction efficiency of
Dynamic NN-Descent, GNND, and RAFT are on the same
level as they follow similar construction strategies. While the
graph quality achieved by different methods is similar, RAFT
shows much lower GPU memory consumption simply because
the major parts of three graph structures are kept on the main
memory. A similar scheme is also feasible for Dynamic NN-
Descent if one would like to save up the GPU memory. GGNN
builds the complete k-NN graph by merging sub-graphs, which
are built in brute-force, via NN search one against the rest.
It, therefore, takes less memory footprint than the other as no
extra big data structure is involved. Nevertheless, GGNN hurts
its construction efficiency due to the multiple random memory
access during NN search, which is the processing bottleneck
on the GPU memory with high IO latency.
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Fig. 7. The empirical time complexity of Dynamic NN-Descent and NN-
Descent on SIFT, DEEP, SPACEV, and Turing. The size of data varies from
104 to 108. K = 100, iterN = 10. For the SIFT and DEEP datasets, the
smpN values are set to 16 and 24 respectively.

E. Empirical Time Complexity
In this experiment, we study the trend of time complexity of

Dynamic NN-Descent in comparison to that of NN-Descent.
The time complexity is estimated by counting the intensive
operations in both algorithms, namely the distance compu-
tation during the local-join. Four types of datasets, namely
SIFT, DEEP, SPACEV, and TURING are considered in the
experiment. The empirical time complexity is then inferred by
examining the logarithmic relationship between the number of
distance calculations and the dataset size n. The parameter K
is fixed at 100 across all the experiments.

As seen from Figure 7, the empirical time complexity of
the Dynamic NN-Descent and NN-Descent is O(d·np), where
p is in the range [1.5, 1.92]. The two algorithms share a
similar time complexity trend across different datasets, while
the empirical time complexity of Dynamic NN-Descent is
slightly lower than that of NN-Descent. Both of them show
high time complexity on the datasets with high local intrinsic
dimension (given in the 3rd column of Table I). Moreover,
as the dataset size increases, the empirical time complexity
decreases steadily.

V. CONCLUSION

We have presented an efficient k-NN graph construction
method, namely Dynamic NN-Descent. Compared to the clas-
sic NN-Descent, the local-join on the neighborhood of each
sample is conducted on a dynamic neighborhood. Specifically,
the old and new neighbors are sampled directly from the k-NN
graph under construction, which is under update consistently.
Moreover, the reverse neighbors are also sampled from the
dynamic k-NN graph. These innovations on the NN-Descent
lead to several advantages. First of all, the extra memory
consumption has been reduced by 85%. And the extra memory
no longer grows proportionally as the graph quality improves.
Moreover, the boundary between two consecutive iterations
of NN-Descent about the k-NN graph update is broken. As
a consequence, no synchronization on the threads within
one iteration is needed. It allows the algorithm to run at
its full speed under the multi-thread context. The extensive
simulations on both the multi-thread CPU and GPU confirm
the significance of our innovation.
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