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a b s t r a c t 

Deep metric learning maps visually similar images onto nearby locations and visually dissimilar images 

apart from each other in an embedding manifold. The learning process is mainly based on the supplied 

image negative and positive training pairs. In this paper, a dynamic sampling strategy is proposed to 

organize the training pairs in an easy-to-hard order to feed into the network. It allows the network to 

learn general boundaries between categories from the easy training pairs at its early stages and finalize 

the details of the model mainly relying on the hard training samples in the later. Compared to the ex- 

isting training sample mining approaches, the hard samples are mined with little harm to the learned 

general model. This dynamic sampling strategy is formulated as two simple terms that are compatible 

with various loss functions. Consistent performance boost is observed when it is integrated with several 

popular loss functions on fashion search and fine-grained image search. 

© 2021 Elsevier B.V. All rights reserved. 
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. Introduction 

Distance metric learning (usually referred to as metric learn- 

ng), aims at constructing a task-specific distance measure based 

n given data. The learned distance metric is then used to support 

arious tasks such as classification, clustering, and retrieval. Con- 

entionally, the metric learning is designed to learn a matrix for 

he parametric Mahalanobis distance. Such that the similar con- 

ents are close to each other under the learned Mahalanobis dis- 

ance, while the distance between the dissimilar contents is large 

Due to the great success of deep learning in many computer vi- 

ion tasks in recent years, it has been gradually introduced to met- 

ic learning, which is widely known as deep metric learning. In- 

tead of learning the distance metric directly, deep metric learning 

earns feature embedding from the raw data. For instance, given 

mages x a , x b and x c , x a and x b are from the same category while

 c is distinct from them. The deep metric learning learns a non- 

inear mapping function F(·) that embeds x a , x b and x c to the new

eature space. In this embedding space, F(x a ) and F(x b ) are close 

o each other, and F(x c ) is dissimilar to both of them under a pre-

efined distance metric m (·, ·) . 
Owing to the seminal learning framework from [1] , deep met- 

ic learning has been successfully adopted in various tasks such 

s online fashion search [14] , face recognition [1,22] , person re- 
∗ Corresponding author. 

E-mail address: wlzhao@xmu.edu.cn (W.-L. Zhao). 
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dentification [30] , and fine-grained image search [18,23,27] , etc. 

n general, the embedding space is learned on image pairs/triplets 

riven by loss functions. Namely, the training images are organized 

nto positive pairs (images from the same category) and negative 

airs (images from different categories). The loss function is de- 

igned to distill all the pair-based category information into a sin- 

le loss value. The training process aims to build an embedding 

pace by minimizing this loss. Such that the pairwise relations re- 

onstructed in the embedding space coincide well with that of be- 

ng supplied to the training. The general framework of deep metric 

earning is shown in Figure 1 . Since the number of pairwise re- 

ations is quadratic to the size of training image set, it is compu- 

ationally expensive to enumerate all the pairwise relations of the 

raining set. As a consequence, the definition of loss function along 

ith the ushered-in pair-sampling strategy becomes critical. 

In the literature, a series of loss functions have been proposed 

ne after another. Contrastive loss [5] and triplet loss [8] are the 

wo most popular loss functions. However, both of them fail to 

ake full use of the pairwise relations in a mini-batch. In addi- 

ion, it is widely observed that the large portion of image pairs 

re easy training samples. Hard training samples, which take up a 

mall portion, are more decisive to the category boundaries. Due to 

he lack of strategy to mine on these hard training samples, deep 

etric learning based solely on contrastive loss and triplet loss con- 

erges slowly. To alleviate this issue, N-Pair loss [23] , lifted structure 

oss [18] , and multiple similarity loss [27] consider more pairwise 

elationships within one mini-batch. This leads to a much faster 

onvergence pace and better discriminativeness of the learned em- 

https://doi.org/10.1016/j.patrec.2021.06.027
http://www.ScienceDirect.com
http://www.elsevier.com/locate/patrec
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edding space. The performance is further boosted by the mining 

f the hard negatives in [3,18,19,23,27] . 

In this paper, the training samples selection is novelly ab- 

tracted into two weighting terms and integrated with the loss 

unction. It allows the training process to learn the embedding 

pace in an order, namely from relatively easy samples to the 

arder. Therefore, the hard concepts (carried by hard samples) are 

earned without overwriting the learned general (easy) concepts. 

oreover, this scheme is generic in the sense it could be inte- 

rated with various loss functions. Its effectiveness is confirmed 

n fashion search and fine-grained image search when it is inte- 

rated with lifted structure loss [18] , multiple similarity loss [27] , 

riplet loss [8] , and BD-loss [30] . 

The remainder of this paper is organized as follows. 

ection 2 reviews the most representative loss functions in 

eep metric learning. Our dynamic sampling strategy is presented 

n Section 3 . The comparative study over the representative loss 

unctions and the proposed sampling strategy is presented in 

ection 4 . Section 5 concludes the paper. 

. Related work 

In this section, several representative loss functions and the en- 

ancement strategies over them in deep metric learning are re- 

iewed. In order to facilitate our later discussions, several concepts 

re defined. Given a pair of images { x i , x j } , the distance between

hem is given as 

 i, j = m (F(x i ) , F(x j )) , (1) 

here m (·, ·) is a pre-defined distance measure. It could be Cosine 

imilarity or Euclidean distance, etc. For clarity, the following dis- 

ussion is made based on Cosine similarity by default. Correspond- 

ngly, the label for this image pair is given as y i, j . Positive pair is

iven as y i, j = 1 , which indicates x i and x j come from the same

ategory. While y i, j equals to 0 when they come from different cat- 

gories. 

Contrastive loss [5] encodes the similarities from both positive 

airs and negative pairs in one loss function. Basically, it regular- 

zes the similarities between positive pairs to be larger than the 

imilarities from negative pairs with a constant margin λ. Namely, 

 c = 

1 

m 

m/ 2 ∑ 

(i, j) 

(
− y i, j s i, j + (1 − y i, j )[0 , s i, j − λ] + 

)
, (2) 

here m is the number of anchor-positive pairs in one training 

atch. [ ·] + in Eq. (2) is the hinge loss. The minimization on L c 

ends to converge as long as the distance between one pair sat- 

sfies with the margin λ. 

Binomial deviance loss ( BD-loss ) [30] can be viewed as a soft ver-

ion of contrastive loss . Its loss function is given as 

 b = 

m ∑ 

i =1 

(
1 
P 

∑ 

y a,b =1 

log 
[
1 + e α(λ−s a , b ) 

]
+ 

1 
N 

∑ 

y c,d =0 

log 
[
1 + e β(s c , d −λ) 

])
, 

(3) 

here P and N are the numbers of positive pairs and negative pairs 

espectively. α and β in Eq. (3) are the scaling factors. According 

o recent studies [15,30] , it shows superior performance on several 

hallenging tasks. 

In order to enhance the discriminativeness of the embedding 

pace, triplet loss (defined in Eq. (4) ) is designed to maximize the 

imilarity between an anchor-positive pair { x a , x p } in contrast to 

he similarity from anchor to a negative sample x n . 

 t = 

3 

2 m 

m/ 2 ∑ 

i =1 

[ s (i ) 
a,n − s (i ) 

a,p + λ] + (4) 
50 
ompared to contrastive loss , the gap between positive and nega- 

ive pairs is defined in terms of relative similarity. 

Recently, several effort s [3,18,19,23,27,29] have been made to 

ine on the hard training samples to further boost its perfor- 

ance. In order to make full use of the samples inside one mini- 

atch, lifted structure loss (see Eq. (5) ) [18] is proposed. The loss 

unction is designed to consider all the positive and negative pairs 

n one mini-batch. 

 f = 

m ∑ 

i =1 

[ 
log 

∑ 

y i, j =1 

e λ−s i , j + log 
∑ 

y i, j =0 

e s i , j 
] 

+ (5) 

he positive and negative pairs are treated equally in this loss 

unction. As a result, the training batch is over-dominated by the 

egative pairs, which makes it easily stuck in local optima. 

Multiple similarity loss [27] is proposed to consider the similar- 

ties from three types of negative pairs. The loss function is given 

n Eq. (6) . 

 m 

= 

1 
m 

m ∑ 

i =1 

(
1 
α log [1 + 

∑ 

k ∈P i 
e −α(s i , k −λ) ] + 

1 
β

log [1 + 

∑ 

k ∈N i 
e β(s i , k −λ) ] 

) (6) 

here α and β are the scaling parameters. In the above loss 

unction, P i and N i are the positive and negative image sets re- 

pectively. According to [27] , similar performance as BD-loss is re- 

orted. 

In the literature, there are many efforts have been taken to en- 

ance the performance by utilizing proxy points [10,16,24] . Encour- 

ging performance is also achieved by augmenting the training set 

ith synthesized hard negatives [2,13] . 

In our solution, the training samples selection is novelly ab- 

tracted to weighting terms and integrated with the loss function. 

t allows the training process to learn the embedding space in an 

rder, namely from relatively easy samples to the harder. There- 

ore, the hard concepts (carried by hard samples) are learned with- 

ut overwriting the learned general (easy) concept. Moreover, this 

cheme is generic in the sense it could be integrated with various 

oss functions. Its effectiveness is confirmed on fashion search and 

ne-grained image search when it is integrated with lifted structure 

oss, multiple similarity loss, triplet loss , and BD-loss . 

. Dynamic training pair selection 

In this section, our strategies that are designed to boost the per- 

ormance of deep metric learning are presented. In general, most 

f the deep metric learning approaches are defined based on the 

raining image pairs. The variations across different approaches 

ainly lie in the selection of training pairs and the definition of 

oss function. In this section, we first present the strategies we 

sed in the training pair selection. Based on the strategies, sev- 

ral popular loss functions, that are integrated with the proposed 

ynamic sampling terms, are presented. 

.1. Heuristics in pairs mining 

As witnessed in many research works [3,18,19,27] , the easy 

raining samples take a large portion in a mini-batch, however 

hey are less informative than the hard training pairs. Similar as 

ther works [28] , hard thresholds are set to filter out these easy 

raining samples. To achieve that, two similarity thresholds τp and 

n , namely one for easy positives and another for easy negative 

airs, are introduced. Given the similarity between a positive pair 

 x i , x j } is s i, j , it will not be considered in the training if s i, j � τp .

imilarly, a negative pair { x k , x m 

} is not considered in the training

s s k,m 

� τn . In our implementation, τp and τn are set to 0.9 and 
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Train Emb

Back prop

CNN FC Triplets/PairsSampling Loss
Functions

Mini-Batch of
n images

Mini-Batch of
n images

Mini-Batch of
n images

Fig. 1. The general framework of deep metric learning. The training images are organized into mini-batches. Images are then forward to a pre-trained ConvNets. The d - 

dimensional feature is produced by the ‘Emb’ layer. The fully-connected layer (FC) between ConvNets and ‘Emb’ is optional. The distances between image pairs are aggregated 

into a single loss value by a pre-defined loss function. The embedding space is optimized by iteratively minimizing this function loss. 

Fig. 2. The illustration of the role of three thresholds. The dashed circles in red, 

blue, and green represent boundaries regularized by τp , τn and Inequation 7 re- 

spectively. In figure (a), the positive samples which meet with s i,k < τp will be se- 

lected. For negative pairs, they could be in either cases illustrated in figure (b) or 

figure (c). Under figure (b) and (c) cases, the negative pair { i, j} that s i, j > τn and 

s i, j > min y i,k s i,k − τb will be selected. (For interpretation of the references to color in 

this figure legend, the reader is referred to the web version of this article.) 
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.1 respectively based on an ablation analysis ( Section 4.3 ). As the 

raining continues, the boundary between positives and negatives 

ecomes clearer. One could imagine growing number of negative 

nd positive pairs is filtered by the thresholds and will no longer 

oin in the training. 

In addition to τp and τn , similar as [27] , a flexible margin is 

et for negative pairs to separate them from the most remote posi- 

ive pairs. Namely, given a positive pair { x i , x k } and a negative pair

 x i , x j } , { x i , x j } will be selected to join in the training when the

ollowing inequation holds. 

 i, j > min 

y i,k =1 
s i,k − τb , (7) 

here τb is the lower bound similarity of a positive sample to the 

nchor. 

The roles that these three thresholds take are illustrated in 

ig. 2 . On the one hand, threshold τp prevents the training from 

ushing the positives as close as possible. On the other hand, 

hreshold τn prevents the negative pairs from being pulled too far 

way. These two thresholds together prevent the structure of the 

earned embedding space from collapsing due to overfitting. Ac- 

ording to our observation, very few training samples could pass 

hrough these two thresholds at the early training stage. As the 

raining continues for several rounds, more and more negative 

airs and positives are well separated in the embedding space. 

hey are, therefore, set aside by these two thresholds. The training 

ets focus more and more on harder training samples. The flexible 

hreshold given by Inequation 7 takes similar effect. As one could 

magine, min y i,k =1 s i,k is relatively small at the early training stage. 

s the embedding space evolves to a better structure, min y i,k =1 s i,k 
rows bigger. This in turn thresholds out more and more relatively 

asy training samples. 
51 
.2. Dynamic metric learning loss 

Based on the above heuristics, only relatively hard pairs are 

oined in the training. Among these relatively hard training sam- 

les, the degree of hardness still varies from one training pair to 

nother. In the ideal scenario, it is expected that the training sam- 

les are organized sequentially according to the degree of hard- 

ess. Samples with low degree of hardness are fed to the training 

t the early stages. As the training model evolves, harder training 

amples are fed to the training process since they become more 

ritical to define the category boundaries. Intuitively, one has to 

repare a group of image pairs for training with increasing degree 

f hardness each time. Although it sounds plausible, it is hard to 

perate as the hardness degree of one image pair varies along with 

he evolving embedding space. In the following, a novel weighting 

trategy based on image pair similarity s i, j is proposed. It regular- 

zes the importance of a training pair according to its hardness in 

he training. The easy training samples are assigned with higher 

mportance at the early training stages and the importance of hard 

raining pairs grows as the training epoch increases. 

In the existing loss functions, the similarity between one pair 

f image s a,b is mainly designed to aggregate the degree of penalty 

nto the loss function. In our design, it is additionally used to in- 

icate the hardness of a pair in one round of training. Specifically, 

or a positive pair { a, b} , the value τp − s a,b basically indicates the 

ardness degree. The larger this value is, the harder the positive 

air is. The value s c,d − τn has the similar efficacy for a negative 

air { c, d} . Let’s take BD-loss as an example. We show how the

raining samples are re-weighted according to their degree of hard- 

ess. Given E t is the number of total epochs we need to train our 

odel, the current number of epochs that the training has been 

ndertaken is given as E c ( 1 ≤ E c ≤ E t ). Two terms 2 E c 
E t 

(τp − s a,b ) 
2 

nd 

2 E c 
E t 

(s c,d − τn ) 
2 , one for positive and one for negative, are in- 

roduced to BD-loss . The BD-loss function is rewritten as 

 

∗
b 

= 

m ∑ 

i =1 

{
1 
P 

∑ 

y a,b =1 

log 

[ 
1 + e 

α[(λ−s a , b )+ 2E c 
E t 

(τp −s a , b ) 
2 ] 
] 
+ 

1 
N 

∑ 

y c,d =0 

log 

[ 
1 + e 

β[(s c , d −λ)+ 2E c 
E t 

(s c , d −τn ) 2 ] 
] }

, 

(8) 

here λ acts as the minimum margin between positives and neg- 

tives for all the loss functions discussed in the paper. Apparently, 

hese two terms are impacted by both E c and the image pair simi- 

arity s . The larger the gap between s and the corresponding bound 

either τp or τn ) is, the higher these two terms are. This basically 

ndicates the degree of hardness for a training pair (either positive 

r negative). Hard pairs tend to hold high weights. The terms are 

lso controlled by the number of current epochs. The more number 

f epochs the training is undertaken, the higher of impact these 

wo terms have on the overall loss L . This leads the learning pro-
b 
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Fig. 3. The illustration of re-weighting term for positive pairs. The term is given as 

the function of similarity s a,b . This term assigns different weights to different pos- 

itive pairs according to their mutual similarities. The weights vary as the epoch E c 
grows. The figure shows the re-weighting curves when training is at 1 st, E t / 2 th and 

E t th epoch. As E c grows, re-weighting is biased towards hard training pairs (whose 

s a,b is low). This leads to the higher contribution to the final loss. 
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2 https://github.com/CH-Liang/DSDML 
ess to focusing on these hard training pairs more and more as E c 
rows bigger. 

Similarly, for lifted structure loss [18] , triplet loss [8] and multiple 

imilarity loss [27] , they are rewritten as Eqs. (9) –(11) when the 

bove two terms are integrated. 

 

∗
f 
= 

m ∑ 

i =1 

{
log 

∑ 

y a,b =1 

e 
[(λ−s a , b )+ 2E c 

E t 
(τp −s a , b ) 

2 ] 

+ log 
∑ 

y c,d =0 

e 
[s c , d + 2E c 

E t 
(s c , d −τn ) 

2 ] 

}
+ 

(9) 

 

∗
t = 

3 
2 m 

m/ 2 ∑ 

i =1 

{
1 
P 

∑ 

y a,b =1 

[ −s a,b + 

2 E c 
E t 

(τp − s a,b ) 
2 ]+ 

1 
N 

∑ 

y c,d =0 

[ s c,d + 

2 E c 
E t 

(s c,d − τn ) 2 ] + λ

}
+ 

(10) 

 

∗
m 

= 

1 
m 

m ∑ 

i =1 

{
1 
α log [1 + 

∑ 

a ∈P i 
e 

[ −α(s i , a −λ)+ 2E c 
E t 

(τp −s i , a ) 
2 ] 

] + 

1 
β

log [1 + 

∑ 

b∈N i 
e 

[ β(s i , b −λ)+ 2E c 
E t 

(s i , c −τn ) 
2 ] 

] 

} (11) 

In Eqs. (9) –(11) , terms 2 E c 
E t 

(τp − s a,b ) 
2 and 

2 E c 
E t 

(s c,d − τn ) 2 play a 

imilar role as they do with BD-loss . Fig. 3 shows the weights pro-

uced by term 

2 E c 
E t 

(τp − s a,b ) 
2 for positive pair with respect to s a,b . 

he similarity of a positive pair s a,b is in the range of [0 . 0 , 0 . 9] after

hresholding by τp . Low s a,b indicates the positive pair is close to 

he category boundary, namely it is a hard positive pair. As shown 

n the figure, the weights we assign to all the pairs are equally 

ow at the first training epoch. The impact of this term on the loss 

unction is therefore minor. Since the easy pairs take a large por- 

ion in one mini-batch, the training is actually biased towards easy 

airs at the early stages. As epoch E c grows, higher weights are 

ssigned to pairs with lower similarities (as shown by the green 

urve in Fig. 3 ). The bias towards hard positives is more significant 

s epoch E c grows even bigger, which in turn leads to the higher 

ontribution from these hard positives to the loss function. Simi- 

ar thing happens to the term for negative pairs. As a consequence, 

he optimization on the above models is tuned to focusing on the 

ard pairs gradually as the epoch grows. 

As will be revealed in the experiment, the simple modifica- 

ion on the popular loss functions leads to considerable perfor- 
52 
ance enhancement on different tasks. The performance improve- 

ent over the original model could be as high as more than 100% . 

The advantages of such modification are three folds. Firstly, the 

raining samples are fed to the model from easy to hard automat- 

cally as the training epoch grows. This allows the training pro- 

ess to focus on relatively easy samples at the early stage and hard 

amples at its later stage. Secondly, this training sample selection 

ule is integrated with the loss function, no extra complexity is in- 

uced. Moreover, it is a generic strategy as it is compatible with 

ifferent types of loss functions. 

.3. Implementation details 

Inception [9] and ResNet-50 [6] (pre-trained on ImageNet [20] ) 

re adopted respectively as the backbone network for our deep 

etric learning. Each training image is first fed into the network 

o generate a fixed-length feature vector, which maps the image 

nto the embedding space. Thereafter, the images are organized 

nto mini-batches. In each training iteration, 25 classes are ran- 

omly selected. Five images are randomly selected from each of 

hese classes. This results in 125 images in one mini-batch. There- 

fter, the image pairs which pass through the thresholds τp , τn and 

atisfy with Inequation 7 are selected to compute loss based on the 

evised function. For instance, Eq. (8) is employed for BD-loss . The 

omputed loss for one mini-batch is back-propagated to optimize 

he network. α, λ, and β in Eq. (8) are set to 2, 0.5 , and 40 respec-

ively. The above training process loops for E t rounds. 

For lifted structure loss, triplet loss , and multiple similarity loss , 

he training process remains largely the same. The only difference 

ies in the loss function. For lifted structure loss, triplet loss , and 

ultiple similarity loss , Eqs. (9) –(11) are employed respectively. λ
n Eq. (9) is set to 1.0 . λ in Eq. (10) is set to 0.5 . α, λ, and β in

q. (11) are set to 2, 0.5 , and 50 respectively. All the codes are im-

lemented with PyTorch and are publicly available on GitHub 2 . 

. Experiments 

In this section, the effectiveness of the proposed dynamic hard 

raining sample mining strategy is studied when it is integrated 

ith four popular loss functions on two deep learning backbones, 

amely Inception [9] and ResNet-50 [6] . The loss functions we con- 

ider are BD-loss (BD), triplet loss (TP), multiple similarity loss (MS), 

nd lifted structure loss (LF). They are denoted as BD 

∗, TP ∗, MS ∗, and

F ∗ respectively when the proposed dynamic sampling strategy is 

ntegrated. Their behavior is comprehensively studied on two dif- 

erent tasks, namely fashion search and fine-grained image search. 

heir performance is compared to state-of-the-art approaches on 

ach task. 

.1. Experiment design and setup 

We noticed the experimental flaws pointed out by Musgrave 

t al. [17] in the current literature of deep metric learning. In our 

xperiment design, four principles are held. 1. No sophisticated im- 

ge augmentation is adopted. Images from all the datasets are re- 

ized to 256 ×256 and then randomly cropped to 224 ×224 . the 

ay of data augmentation follows with the configurations in [18] . 

amely, the random cropping and random horizontal flips are em- 

loyed during training and single cropping is employed during 

esting; 2. The Adam optimizer is adopted in the training for all 

he loss functions we consider. The output feature size is fixed to 

12 for all the pull-out runs; 3. In order to alleviate overfitting, the 

arameters in Batch-Norm are frozen; 4. The provided training set 

https://github.com/CH-Liang/DSDML
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Table 1 

Summary over four datasets used in the evaluation. 

Datasets #Train #Validation #Test 

(#Images/#Class) 

In-shop [14] 19,412/3,000 6,470/997 26,830/3,985 

Deepfashion2 [4] 127,149/11,538 42,435/6,621 28,556/3,031 

CUB200 [25] 4,360/74 1,504/26 5,924/100 

Cars-196 [12] 6,018/73 2,036/25 8,131/98 

Table 2 

Ablation analysis of BD-loss on In-shop test set. τb = 0 . 2 , τp = . 9 and 

τb = 0 . 1 . 

Recall@ Dim. 1 10 20 30 40 50 

BD 512 85.4 95.3 96.8 97.4 97.8 98.1 

BD + T 512 86.6 95.9 97.3 97.8 98.2 98.4 

BD + W 512 87.4 97.0 98.1 98.4 98.6 98.7 

BD ∗ 512 87.6 97.3 98.3 98.6 98.8 98.9 
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Fig. 4. The performance trends of BD+T and BD ∗ on CUB200 validation set as τb 

varies. In the experiment, τp and τn are fixed to 0.9 and 0.1 respectively. 

Fig. 5. The performance trend of BD+T and BD ∗ on CUB200 validation set as τp and 

τn vary. τb is fixed to 0.2. 
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re divided into two. 25% training samples are set aside for valida- 

ion and the other 75% are used in training. Above experiment de- 

ign is to guarantee that the observed performance improvements 

re from the proposed dynamic sampling instead of the underlying 

ricks. The results from other relevant works are cited for refer- 

nce. However, these results are not literally comparable to ours as 

he above principles are not necessarily held in the referred paper. 

Following the convention in the literature, we report our perfor- 

ance in terms of Recall@K. To be line with the evaluation conven- 

ion on different benchmarks, difference series of Ks are taken on 

ifferent datasets. All the experiments are carried out on a server 

ith NVIDIA GTX 1080 Ti GPU setup. 

.2. Datasets and evaluation protocols 

For fashion search, datasets In-Shop (also known as Deepfash- 

on) [14] and Deepfashion2 [4] are adopted in the evaluation. 

ataset In-Shop is a collection of fashion product images crawled 

rom online shopping websites. For dataset Deepfashion2 , it is com- 

rised of images both from online shops and users. Consider- 

ble portion of the images are directly collected from Deepfash- 

on . For Deepfashion2 , the retrieval is defined as user-to-shop query. 

amely, the images uploaded by the users are treated as queries. 

he same product images crawled from online shopping websites 

re treated as the search targets. It is more challenging than In- 

hop task as it is a cross-domain search problem. Since the test set 

or Deepfashion2 is not released yet, the validation set is treated as 

he candidate dataset for search evaluation. 

For fine-grained image search, CUB-200-2011 [25] and CARS- 

96 [12] are adopted, both of which are the most popular eval- 

ation benchmarks in deep metric learning. The details about 

ow each dataset is divided into training/validation/testing set are 

hown in Tab. 1 . 

.3. Ablation study 

In the ablation study, we first investigate the contributions 

rom flexible threshold (given by Eq. (7) ), the dynamic sampling 

nd their combination. Afterwards, the choices of three similarity 

hresholds τb , τp , and τn are verified. All the experiments in this 

art are carried out with the backbone of Inception. 

In the first experiment, the BD-loss that is integrated with sim- 

le thresholding with τp , τn and In Eq. (7) is given as “BD+T”. 

hile BD-loss integrated with two re-weighting terms only is given 

s “BD+W”. BD-loss integrated with both is given as BD 

∗. The re- 

ults of these three runs on In-shop are shown in Table 2 . The re-

ult from BD-loss is treated as the comparison baseline. 
53 
As shown in the table, both schemes achieve consistent im- 

rovement. On average, the dynamic sampling brings more con- 

iderable improvement than simple thresholding. The best perfor- 

ance is observed when two schemes are integrated as a whole. 

his basically indicates they are complementary to each other. In 

he following experiments, all the four loss functions we study 

ere are integrated with these two enhancement schemes. 

In the above experiment, three similarity thresholds, namely τb , 

p , and τn are fixed to 0.2, 0.9 and 0.1 respectively. In this exper- 

ment, we are going to verify whether the settings for these three 

hresholds are appropriate. The study is carried out on CUB-200 

ataset. The BD-loss is adopted. The parameter τb is verified first. 

n this experiment τp and τn are fixed to 0.9 and 0.1 respectively. 

n the second study, τb is fixed to 0.2, while different couplings of 

p and τn are tested. 

As shown in Fig. 4 , the search performance of “BD+T” and “BD 

∗”

uctuates as τb varies from 0.1 to 0.9 . In general, relatively higher 

erformance is observed as τb is set to low similarity value. The 

ighest performance is reached for both “BD+T” and “BD 

∗” as τb = 

 . 2 . As a result, τb is fixed to 0.2 in the rest of experiments. The

erformance trend of “BD+T” and “BD 

∗” on CUB-200 is shown in 

ig. 5 as different couplings of τp and τn are tested. As shown in 

he figure, the best performance is reached both for “BD+T” and 

BD 

∗” as τp and τn are set to 0.9 and 0.1 respectively. In the rest of 

ur experiments, τp and τn are fixed to this setting. 
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Table 3 

Comparison with the state-of-the-art approaches on In-Shop . 

Recall@ Dim. 1 10 20 30 40 50 

FashionNet ‡ [14] 4,096 53.0 73.0 76.0 77.0 79.0 80.0 

Divide ‡ [21] 128 85.7 95.5 96.9 97.5 – 98.0 

ABE ‡ [11] 512 87.3 96.7 97.9 98.2 98.5 98.7 

MIC ‡ [19] 128 88.2 97.0 – 98.0 – 98.8 

Inception BD 512 85.4 95.3 96.8 97.4 97.8 98.1 

BD 

∗ 512 87.6 97.3 98.3 98.6 98.8 98.9 

LF 512 38.1 67.2 74.9 78.9 81.4 83.4 

LF ∗ 512 86.7 96.3 97.6 98.1 98.4 98.5 

MS 512 85.8 95.7 97.2 97.8 98.1 98.4 

MS ∗ 512 88.0 97.0 98.1 98.5 98.7 98.9 

TP 512 81.2 93.7 95.7 96.6 97.2 97.6 

TP ∗ 512 83.4 94.5 96.2 97.0 97.4 97.8 

Resnet-50 BD 512 80.7 92.5 94.4 95.5 96.1 96.7 

BD 

∗ 512 81.3 93.6 95.4 96.2 96.7 97.1 

LF 512 28.8 59.0 67.6 72.3 75.5 77.9 

LF ∗ 512 78.5 92.6 94.6 95.6 96.2 96.7 

MS 512 80.8 91.9 94.3 95.5 96.2 96.6 

MS ∗ 512 81.9 92.9 94.7 95.7 96.3 96.7 

TP 512 76.1 90.5 93.0 94.2 94.9 95.5 

TP ∗ 512 78.2 91.4 93.5 94.4 95.1 95.6 

‡ results are cited from the referred paper. 
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Table 4 

Comparison with the state-of-the-art approaches on Deepfashion2 

Recall@ Dim. 1 5 10 20 

Match R-CNN 

‡ [4] 256 26.8 – 57.4 66.5 

Angular ‡ [26] 128 32.4 47.9 55.3 62.3 

Hard Triplet ‡ [7] 128 32.4 48.9 56.0 63.2 

N-Pair ‡ [23] 128 32.8 50.1 57.9 64.8 

MIC [19] 512 38.1 52.1 59.3 66.3 

Divide [21] 512 39.4 54.4 61.5 68.5 

Inception BD 512 39.6 54.4 61.8 69.3 

BD 

∗ 512 40.2 56.1 62.9 69.5 

LF 512 15.3 26.8 33.9 41.6 

LF ∗ 512 40.6 57.1 65.2 71.2 

MS 512 40.5 56.5 63.7 70.8 

MS ∗ 512 42.2 58.4 65.7 72.3 

TP 512 37.4 52.4 60.3 67.5 

TP ∗ 512 39.3 55.2 62.9 70.4 

Resnet-50 BD 512 31.3 45.7 52.5 60.2 

BD 

∗ 512 32.4 47.0 53.9 61.0 

LF 512 11.2 21.8 27.8 35.0 

LF ∗ 512 33.5 48.6 56.6 65.1 

MS 512 34.5 48.9 56.1 63.5 

MS ∗ 512 35.8 51.0 58.4 66.2 

TP 512 30.1 45.4 53.1 61.3 

TP ∗ 512 35.3 50.3 57.5 65.0 

‡ results are cited from the referred paper. 

Table 5 

Comparison with the state-of-the-art approaches on CUB200 . 

Recall@ Dim. 1 2 4 8 16 32 

ABE ‡ [11] 512 60.6 71.5 79.8 87.4 – –

Divide ‡ [21] 128 65.9 76.6 84.4 90.6 – –

MIC ‡ [19] 128 66.1 76.8 85.6 – – –

Inception BD 512 61.6 71.8 81.8 88.6 93.2 96.3 

BD 

∗ 512 61.8 73.3 83.0 89.6 94.0 96.9 

LF 512 46.2 58.7 70.1 80.1 87.2 92.6 

LF ∗ 512 58.4 69.5 78.6 86.3 91.6 95.2 

MS 512 62.6 73.5 82.1 88.9 93.2 96.5 

MS ∗ 512 63.1 74.2 83.0 90.0 94.3 97.1 

TP 512 51.0 62.3 72.7 81.9 87.9 92.4 

TP ∗ 512 54.6 66.8 77.2 84.7 90.4 94.4 

Resnet-50 BD 512 28.4 39.3 49.8 62.3 73.8 83.2 

BD 

∗ 512 40.2 52.2 63.7 74.5 83.2 90.6 

LF 512 15.2 22.6 32.1 43.8 57.9 71.3 

LF ∗ 512 32.9 44.7 57.1 68.5 79.1 87.0 

MS 512 44.0 57.1 68.4 78.6 86.0 95.4 

MS ∗ 512 45.1 58.2 69.8 79.8 86.6 95.8 

TP 512 25.5 36.6 48.9 61.5 72.7 82.8 

TP ∗ 512 28.5 39.1 50.9 63.1 74.4 84.3 

‡ results are cited from the referred paper. 
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.4. Fashion search 

In this section, the effectiveness of the proposed enhancement 

trategy on four loss functions is studied in fashion search task. 

epresentative approaches in the literature on this task are con- 

idered in the study. FashionNet [14] and Match R-CNN [4] are 

reated as the comparison baselines for In-Shop and Deepfashion2 

espectively. They are proposed along with these two benchmarks. 

he fashion search is treated as a sub-task under the multi-task 

earning framework. In addition, recent deep metric learning ap- 

roaches Divide and Conquer (Divide) [21] , Mining Interclass Char- 

cteristics (MIC) [19] , Angular loss (Angular) [26] , Batch hard triplet 

oss (Hard Triplet) [7] and N-Pair loss (N-Pair) [23] are also consid- 

red in the comparison. Among these approaches, MIC learns aux- 

liary encoder for the visual attributes, which induces extra com- 

utational costs. Attention-based Ensemble (ABE) [11] is the repre- 

entative approach of ensemble deep metric learning. Due to the 

ifference in training settings, the results from these papers are 

ot literally comparable to ours. The results are cited for reference 

nly. 

The performance on In-Shop and Deepfashion2 is shown on 

ables 3 and 4 respectively. As shown in Tables 3 and 4 , all the

our loss functions that are integrated with dynamic sampling 

erms demonstrate considerable performance improvement. The 

mprovement ranges from 10-100% for different loss functions. Be- 

ng integrated with the dynamic sampling, the performance from 

ll loss functions with both backbones becomes competitive to or 

ven outperforms the most effective approach in the literature, 

n particular on the challenging dataset Deepfashion2 . Although 

esNet-50 turns out to be more powerful than Inception in many 

cenarios, Inception shows better performance in our implemen- 

ation. When no additional training tricks are involved, the fea- 

ures from pre-trained ResNet-50 lack of discriminativeness be- 

ween samples within the same category ( e.g. , clothes). Accord- 

ng to our observation, Inception is more effective in dealing with 

ne-grained search problems. An interesting observation is that the 

erformance difference between different loss functions becomes 

uch smaller when being all supported by the dynamic sampling. 

The search result samples from MS and MS ∗ on In-Shop are 

hown in Fig. 6 . As shown in the figure, the false positives re-

urned by MS are visually very similar to the queries. They are the 

ard samples. When being integrated with the weighting terms, 

he fine-grained details carried by these hard samples can be well 
54 
earned by MS ∗ at its later stages. As shown in the figure, the MS ∗

urns out to be robust to severe variations in fine-grained texture, 

iew point, and color. 

.5. Fine-grained image search 

In this section, the performance of the enhanced loss functions 

s evaluated on CUB-200-2011 and CARS-196 for fine-grained im- 

ge search. Three state-of-the-art deep metric learning approaches 

ivide [21] , ABE [11] and MIC [19] are considered in the compar- 

son. The performance results on these two datasets are shown in 

ables 5 and 6 respectively. 

The modified loss functions demonstrate consistent improve- 

ent over the original ones. The improvement is significant on 

ifted structure loss . Similar as the fashion search task, the perfor- 

ance gap becomes minor among different loss functions when 

ynamic sampling is adopted. Due to the small scale of CUB- 

00-2011 and CARS-196 , the impact of hyper-parameters becomes 

reater which leads to significant performance drops with ResNet- 

0 backbone. Overall, BD 

∗ and MS ∗ perform competitively well 
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Fig. 6. Top-2 search results on In-Shop . The queries are shown on the left and followed by retrieved top-2 results from MS and MS ∗ with Inception as the backbone. Our 

approach improves the performance significantly and shows stable performance even under severe transformations. 

Table 6 

Comparison with the state-of-the-art approaches on Cars-196 . 

Recall@ Dim. 1 2 4 8 16 32 

ABE ‡ [11] 512 85.2 90.5 94.0 96.1 – –

Divide ‡ [21] 128 84.6 90.7 94.1 96.5 – –

MIC ‡ [19] 128 82.6 89.1 93.2 – – –

Inception BD 512 74.3 83.0 88.9 93.2 96.3 98.1 

BD 

∗ 512 75.7 84.4 90.6 94.8 97.2 98.8 

LF 512 36.1 47.6 60.7 71.8 81.5 88.5 

LF ∗ 512 69.0 78.9 86.0 91.6 95.2 97.6 

MS 512 77.0 84.3 89.8 93.5 96.2 98.0 

MS ∗ 512 78.0 85.6 90.8 94.3 96.7 98.4 

TP 512 51.1 62.4 72.6 80.2 86.7 91.8 

TP ∗ 512 62.2 72.2 80.5 87.0 92.1 95.5 

Resnet-50 BD 512 55.3 66.1 75.2 83.2 88.9 93.2 

BD 

∗ 512 56.6 67.2 76.6 83.8 89.6 93.7 

LF 512 22.6 32.3 43.3 55.9 68.4 79.6 

LF ∗ 512 53.2 65.4 75.1 82.7 88.8 93.4 

MS 512 61.7 72.2 80.8 87.8 92.9 96.2 

MS ∗ 512 65.8 75.7 83.2 89.1 93.5 96.2 

TP 512 45.1 56.6 66.7 75.9 83.6 89.2 

TP ∗ 512 46.2 57.9 68.3 77.2 84.7 90.4 

‡ results are cited from the referred paper. 
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ith the state-of-the-art approaches, namely Divide and MIC. Com- 

ared to Divide and MIC, our approach is much lightweight. Ap- 

roach Divide requires to learn several sub-embedding spaces. 

imilarly, extra computation is required in MIC to train the aux- 

liary encoder for the latent visual attributes. In contrast, consider- 

ble improvement from our approach is achieved by injecting two 

e-weighting terms into the loss function. No sophisticated modi- 

cation on the training process or the network architecture is re- 

uired. 
55 
Overall, BD-loss and multiple similarity loss show considerably 

uperior performance over other loss functions on two different 

asks. With the proposed dynamic sampling strategy, both mod- 

ls show performance boost on two tasks and across different pa- 

ameter settings. In particular, the performance from the enhanced 

D-loss and multiple similarity loss is better than or close to state- 

f-the-art approaches on two tasks. 

. Conclusion 

We have presented a simple but effective dynamic sampling 

trategy to boost the performance of deep metric learning. In our 

olution, the dynamic sampling is formulated as two terms that 

re compatible with various loss functions. These two re-weighting 

erms dynamically tune the impact that a training pair contribute 

o the loss function. This allows the network to learn the concepts 

rom easy to hard, which is comparable to the cognitive process 

f human beings. With this dynamic sampling strategy, the perfor- 

ance gap among different loss functions becomes minor. Consis- 

ent improvement on two tasks is observed with all the loss func- 

ions on two popular backbones. 
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