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Deep metric learning maps visually similar images onto nearby locations and visually dissimilar images
apart from each other in an embedding manifold. The learning process is mainly based on the supplied
image negative and positive training pairs. In this paper, a dynamic sampling strategy is proposed to
organize the training pairs in an easy-to-hard order to feed into the network. It allows the network to
learn general boundaries between categories from the easy training pairs at its early stages and finalize
the details of the model mainly relying on the hard training samples in the later. Compared to the ex-
isting training sample mining approaches, the hard samples are mined with little harm to the learned
general model. This dynamic sampling strategy is formulated as two simple terms that are compatible
with various loss functions. Consistent performance boost is observed when it is integrated with several
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popular loss functions on fashion search and fine-grained image search.
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1. Introduction

Distance metric learning (usually referred to as metric learn-
ing), aims at constructing a task-specific distance measure based
on given data. The learned distance metric is then used to support
various tasks such as classification, clustering, and retrieval. Con-
ventionally, the metric learning is designed to learn a matrix for
the parametric Mahalanobis distance. Such that the similar con-
tents are close to each other under the learned Mahalanobis dis-
tance, while the distance between the dissimilar contents is large

Due to the great success of deep learning in many computer vi-
sion tasks in recent years, it has been gradually introduced to met-
ric learning, which is widely known as deep metric learning. In-
stead of learning the distance metric directly, deep metric learning
learns feature embedding from the raw data. For instance, given
images Xg4, X;, and X¢, X and x;, are from the same category while
Xc is distinct from them. The deep metric learning learns a non-
linear mapping function F(-) that embeds x4, X, and x. to the new
feature space. In this embedding space, F(x,) and F(x;) are close
to each other, and F(x.) is dissimilar to both of them under a pre-
defined distance metric m(., -).

Owing to the seminal learning framework from [1], deep met-
ric learning has been successfully adopted in various tasks such
as online fashion search [14], face recognition [1,22], person re-
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identification [30], and fine-grained image search [18,23,27], etc.
In general, the embedding space is learned on image pairs/triplets
driven by loss functions. Namely, the training images are organized
into positive pairs (images from the same category) and negative
pairs (images from different categories). The loss function is de-
signed to distill all the pair-based category information into a sin-
gle loss value. The training process aims to build an embedding
space by minimizing this loss. Such that the pairwise relations re-
constructed in the embedding space coincide well with that of be-
ing supplied to the training. The general framework of deep metric
learning is shown in Figure 1. Since the number of pairwise re-
lations is quadratic to the size of training image set, it is compu-
tationally expensive to enumerate all the pairwise relations of the
training set. As a consequence, the definition of loss function along
with the ushered-in pair-sampling strategy becomes critical.

In the literature, a series of loss functions have been proposed
one after another. Contrastive loss [5] and triplet loss [8] are the
two most popular loss functions. However, both of them fail to
make full use of the pairwise relations in a mini-batch. In addi-
tion, it is widely observed that the large portion of image pairs
are easy training samples. Hard training samples, which take up a
small portion, are more decisive to the category boundaries. Due to
the lack of strategy to mine on these hard training samples, deep
metric learning based solely on contrastive loss and triplet loss con-
verges slowly. To alleviate this issue, N-Pair loss [23], lifted structure
loss [18], and multiple similarity loss [27] consider more pairwise
relationships within one mini-batch. This leads to a much faster
convergence pace and better discriminativeness of the learned em-
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bedding space. The performance is further boosted by the mining
of the hard negatives in [3,18,19,23,27].

In this paper, the training samples selection is novelly ab-
stracted into two weighting terms and integrated with the loss
function. It allows the training process to learn the embedding
space in an order, namely from relatively easy samples to the
harder. Therefore, the hard concepts (carried by hard samples) are
learned without overwriting the learned general (easy) concepts.
Moreover, this scheme is generic in the sense it could be inte-
grated with various loss functions. Its effectiveness is confirmed
on fashion search and fine-grained image search when it is inte-
grated with lifted structure loss [18], multiple similarity loss [27],
triplet loss [8], and BD-loss [30].

The remainder of this paper is organized as follows.
Section 2 reviews the most representative loss functions in
deep metric learning. Our dynamic sampling strategy is presented
in Section 3. The comparative study over the representative loss
functions and the proposed sampling strategy is presented in
Section 4. Section 5 concludes the paper.

2. Related work

In this section, several representative loss functions and the en-
hancement strategies over them in deep metric learning are re-
viewed. In order to facilitate our later discussions, several concepts
are defined. Given a pair of images {x;.x;}, the distance between
them is given as

Sij=m(F ), F(xj)), (1)

where m(-, ) is a pre-defined distance measure. It could be Cosine
similarity or Euclidean distance, etc. For clarity, the following dis-
cussion is made based on Cosine similarity by default. Correspond-
ingly, the label for this image pair is given as y; ;. Positive pair is
given as y; ; =1, which indicates x; and x; come from the same
category. While y; ; equals to 0 when they come from different cat-
egories.

Contrastive loss [5] encodes the similarities from both positive
pairs and negative pairs in one loss function. Basically, it regular-
izes the similarities between positive pairs to be larger than the
similarities from negative pairs with a constant margin A. Namely,

1 m/2
2

(@.J)
where m is the number of anchor-positive pairs in one training
batch. [-]; in Eq. (2) is the hinge loss. The minimization on L.
tends to converge as long as the distance between one pair sat-
isfies with the margin A.

Binomial deviance loss (BD-loss) [30] can be viewed as a soft ver-
sion of contrastive loss. Its loss function is given as

Le (2)

( —yiSij+ (1 =y )I0,s;;— )»]+),
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where P and N are the numbers of positive pairs and negative pairs
respectively. « and 8 in Eq. (3) are the scaling factors. According
to recent studies [15,30], it shows superior performance on several
challenging tasks.

In order to enhance the discriminativeness of the embedding
space, triplet loss (defined in Eq. (4)) is designed to maximize the
similarity between an anchor-positive pair {xq,x,} in contrast to
the similarity from anchor to a negative sample x;,.

3 m/2

= 5m Z[S(% - Sc(lf)P
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Le + Al (4)
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Compared to contrastive loss, the gap between positive and nega-
tive pairs is defined in terms of relative similarity.

Recently, several efforts [3,18,19,23,27,29] have been made to
mine on the hard training samples to further boost its perfor-
mance. In order to make full use of the samples inside one mini-
batch, lifted structure loss (see Eq. (5)) [18] is proposed. The loss
function is designed to consider all the positive and negative pairs
in one mini-batch.

m
Ly=Y" [log > et itlog esi-J]Jr

i=1 yij=1 Yi;=0

(3)

The positive and negative pairs are treated equally in this loss
function. As a result, the training batch is over-dominated by the
negative pairs, which makes it easily stuck in local optima.

Multiple similarity loss [27] is proposed to consider the similar-
ities from three types of negative pairs. The loss function is given
in Eq. (6).

Lm=1 (;log[l + Y e oGN]y

i=1 keP;

(6)

ému+z&m%0
keN;

where o and B are the scaling parameters. In the above loss

function, P; and N; are the positive and negative image sets re-

spectively. According to [27], similar performance as BD-loss is re-

ported.

In the literature, there are many efforts have been taken to en-
hance the performance by utilizing proxy points [10,16,24]. Encour-
aging performance is also achieved by augmenting the training set
with synthesized hard negatives [2,13].

In our solution, the training samples selection is novelly ab-
stracted to weighting terms and integrated with the loss function.
It allows the training process to learn the embedding space in an
order, namely from relatively easy samples to the harder. There-
fore, the hard concepts (carried by hard samples) are learned with-
out overwriting the learned general (easy) concept. Moreover, this
scheme is generic in the sense it could be integrated with various
loss functions. Its effectiveness is confirmed on fashion search and
fine-grained image search when it is integrated with lifted structure
loss, multiple similarity loss, triplet loss, and BD-loss.

3. Dynamic training pair selection

In this section, our strategies that are designed to boost the per-
formance of deep metric learning are presented. In general, most
of the deep metric learning approaches are defined based on the
training image pairs. The variations across different approaches
mainly lie in the selection of training pairs and the definition of
loss function. In this section, we first present the strategies we
used in the training pair selection. Based on the strategies, sev-
eral popular loss functions, that are integrated with the proposed
dynamic sampling terms, are presented.

3.1. Heuristics in pairs mining

As witnessed in many research works [3,18,19,27], the easy
training samples take a large portion in a mini-batch, however
they are less informative than the hard training pairs. Similar as
other works [28], hard thresholds are set to filter out these easy
training samples. To achieve that, two similarity thresholds 7, and
T, Namely one for easy positives and another for easy negative
pairs, are introduced. Given the similarity between a positive pair
{xi.x;} is s; j, it will not be considered in the training if s; ; > 7p.
Similarly, a negative pair {x;, xn} is not considered in the training
as Sy, < Tn. In our implementation, 7, and 7, are set to 0.9 and
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Fig. 1. The general framework of deep metric learning. The training images are organized into mini-batches. Images are then forward to a pre-trained ConvNets. The d-
dimensional feature is produced by the ‘Emb’ layer. The fully-connected layer (FC) between ConvNets and ‘Emb’ is optional. The distances between image pairs are aggregated
into a single loss value by a pre-defined loss function. The embedding space is optimized by iteratively minimizing this function loss.
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Fig. 2. The illustration of the role of three thresholds. The dashed circles in red,
blue, and green represent boundaries regularized by 7,, 7, and Inequation 7 re-
spectively. In figure (a), the positive samples which meet with s;, < 7, will be se-
lected. For negative pairs, they could be in either cases illustrated in figure (b) or
figure (c). Under figure (b) and (c) cases, the negative pair {i, j} that s;; > 7, and
sij > miny,, s;; — 7, will be selected. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)

0.1 respectively based on an ablation analysis (Section 4.3). As the
training continues, the boundary between positives and negatives
becomes clearer. One could imagine growing number of negative
and positive pairs is filtered by the thresholds and will no longer
join in the training.

In addition to 7, and t,, similar as [27], a flexible margin is
set for negative pairs to separate them from the most remote posi-
tive pairs. Namely, given a positive pair {x;, x,} and a negative pair
{xi.x;}, {xi,x;} will be selected to join in the training when the
following inequation holds.

si,j > min Sik — Ths
Yir=1

(7)
where 7, is the lower bound similarity of a positive sample to the
anchor.

The roles that these three thresholds take are illustrated in
Fig. 2. On the one hand, threshold 7, prevents the training from
pushing the positives as close as possible. On the other hand,
threshold t, prevents the negative pairs from being pulled too far
away. These two thresholds together prevent the structure of the
learned embedding space from collapsing due to overfitting. Ac-
cording to our observation, very few training samples could pass
through these two thresholds at the early training stage. As the
training continues for several rounds, more and more negative
pairs and positives are well separated in the embedding space.
They are, therefore, set aside by these two thresholds. The training
gets focus more and more on harder training samples. The flexible
threshold given by Inequation 7 takes similar effect. As one could
imagine, miny,  _1 s; is relatively small at the early training stage.
As the embedding space evolves to a better structure, minyi‘kzl Sik
grows bigger. This in turn thresholds out more and more relatively
easy training samples.
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3.2. Dynamic metric learning loss

Based on the above heuristics, only relatively hard pairs are
joined in the training. Among these relatively hard training sam-
ples, the degree of hardness still varies from one training pair to
another. In the ideal scenario, it is expected that the training sam-
ples are organized sequentially according to the degree of hard-
ness. Samples with low degree of hardness are fed to the training
at the early stages. As the training model evolves, harder training
samples are fed to the training process since they become more
critical to define the category boundaries. Intuitively, one has to
prepare a group of image pairs for training with increasing degree
of hardness each time. Although it sounds plausible, it is hard to
operate as the hardness degree of one image pair varies along with
the evolving embedding space. In the following, a novel weighting
strategy based on image pair similarity s; ; is proposed. It regular-
izes the importance of a training pair according to its hardness in
the training. The easy training samples are assigned with higher
importance at the early training stages and the importance of hard
training pairs grows as the training epoch increases.

In the existing loss functions, the similarity between one pair
of image s, ; is mainly designed to aggregate the degree of penalty
into the loss function. In our design, it is additionally used to in-
dicate the hardness of a pair in one round of training. Specifically,
for a positive pair {a, b}, the value 7, — s, basically indicates the
hardness degree. The larger this value is, the harder the positive
pair is. The value s.; — 7, has the similar efficacy for a negative
pair {c,d}. Let's take BD-loss as an example. We show how the
training samples are re-weighted according to their degree of hard-
ness. Given E; is the number of total epochs we need to train our
model, the current number of epochs that the training has been
undertaken is given as E. (1 < E. < E;). Two terms ZE—Et”(tp —sa_b)2

and ZE—E[C(SC.d — 1,)%, one for positive and one for negative, are in-
troduced to BD-loss. The BD-loss function is rewritten as

Ly = i {11» > log [1 + e“[(’\’s“-b)*%(t"’s“"’)zl]+
i=1 Yap=1 (8)
% 3 log [] _|_eﬂ[(sc.d_k)‘*'zgic(Sc,d_fn)zl:l}’
Yea=0

where A acts as the minimum margin between positives and neg-
atives for all the loss functions discussed in the paper. Apparently,
these two terms are impacted by both E; and the image pair simi-
larity s. The larger the gap between s and the corresponding bound
(either T, or 1) is, the higher these two terms are. This basically
indicates the degree of hardness for a training pair (either positive
or negative). Hard pairs tend to hold high weights. The terms are
also controlled by the number of current epochs. The more number
of epochs the training is undertaken, the higher of impact these
two terms have on the overall loss £,. This leads the learning pro-
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Fig. 3. The illustration of re-weighting term for positive pairs. The term is given as
the function of similarity s, ,. This term assigns different weights to different pos-
itive pairs according to their mutual similarities. The weights vary as the epoch E.
grows. The figure shows the re-weighting curves when training is at 1st, E;/2th and
E:th epoch. As E. grows, re-weighting is biased towards hard training pairs (whose
Sq.p is low). This leads to the higher contribution to the final loss.

cess to focusing on these hard training pairs more and more as E.
grows bigger.

Similarly, for lifted structure loss [18], triplet loss [8] and multiple
similarity loss [27], they are rewritten as Eqs. (9)-(11) when the
above two terms are integrated.

log ¥ e[()"_sa,b)+ % (Tp—sap)?]

i=1 Yap=1

B
' (9)
9
+log Y e[sc.d+2EEtc(St.dfn)2]}+
Yea=0

;=

m/2
z% {113 Zl[_sa,b+ ZTI:;C(TP _Sa,b)2]+
1= Yab=

(10)

¥ L Iscat Fe (Seq — )2+ /\}+
Yed=

1
m n
i=1

In Egs. (9)-(11), terms ZE—Etf(rp —Sap)? and ZE—E[f(sc,d —12)? play a
similar role as they do with BD-loss. Fig. 3 shows the weights pro-
duced by term ZE—’:;C(IP —sqp)? for positive pair with respect to s .
The similarity of a positive pair s, is in the range of [0.0, 0.9] after
thresholding by 7p. Low s, indicates the positive pair is close to
the category boundary, namely it is a hard positive pair. As shown
in the figure, the weights we assign to all the pairs are equally
low at the first training epoch. The impact of this term on the loss
function is therefore minor. Since the easy pairs take a large por-
tion in one mini-batch, the training is actually biased towards easy
pairs at the early stages. As epoch E. grows, higher weights are
assigned to pairs with lower similarities (as shown by the green
curve in Fig. 3). The bias towards hard positives is more significant
as epoch E; grows even bigger, which in turn leads to the higher
contribution from these hard positives to the loss function. Simi-
lar thing happens to the term for negative pairs. As a consequence,
the optimization on the above models is tuned to focusing on the
hard pairs gradually as the epoch grows.

As will be revealed in the experiment, the simple modifica-
tion on the popular loss functions leads to considerable perfor-

Llog[1+ ¥ el @G+

aeP;

2Ec
%log[l + ¥ e[ﬂ(si.b—l)-*-gi(S..c—Tn)Z]]}
beN;

£*m — (TP_Si.a)Z]]_,’_

(11)
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mance enhancement on different tasks. The performance improve-
ment over the original model could be as high as more than 100%.

The advantages of such modification are three folds. Firstly, the
training samples are fed to the model from easy to hard automat-
ically as the training epoch grows. This allows the training pro-
cess to focus on relatively easy samples at the early stage and hard
samples at its later stage. Secondly, this training sample selection
rule is integrated with the loss function, no extra complexity is in-
duced. Moreover, it is a generic strategy as it is compatible with
different types of loss functions.

3.3. Implementation details

Inception [9] and ResNet-50 [6] (pre-trained on ImageNet [20])
are adopted respectively as the backbone network for our deep
metric learning. Each training image is first fed into the network
to generate a fixed-length feature vector, which maps the image
into the embedding space. Thereafter, the images are organized
into mini-batches. In each training iteration, 25 classes are ran-
domly selected. Five images are randomly selected from each of
these classes. This results in 125 images in one mini-batch. There-
after, the image pairs which pass through the thresholds tp, 7, and
satisfy with Inequation 7 are selected to compute loss based on the
revised function. For instance, Eq. (8) is employed for BD-loss. The
computed loss for one mini-batch is back-propagated to optimize
the network. «, A, and § in Eq. (8) are set to 2, 0.5, and 40 respec-
tively. The above training process loops for E; rounds.

For lifted structure loss, triplet loss, and multiple similarity loss,
the training process remains largely the same. The only difference
lies in the loss function. For lifted structure loss, triplet loss, and
multiple similarity loss, Eqs. (9)-(11) are employed respectively. A
in Eq. (9) is set to 1.0. A in Eq. (10) is set to 0.5. «, A, and B in
Eq. (11) are set to 2, 0.5, and 50 respectively. All the codes are im-
plemented with PyTorch and are publicly available on GitHub?.

4. Experiments

In this section, the effectiveness of the proposed dynamic hard
training sample mining strategy is studied when it is integrated
with four popular loss functions on two deep learning backbones,
namely Inception [9] and ResNet-50 [6]. The loss functions we con-
sider are BD-loss (BD), triplet loss (TP), multiple similarity loss (MS),
and lifted structure loss (LF). They are denoted as BD*, TP*, MS*, and
LF* respectively when the proposed dynamic sampling strategy is
integrated. Their behavior is comprehensively studied on two dif-
ferent tasks, namely fashion search and fine-grained image search.
Their performance is compared to state-of-the-art approaches on
each task.

4.1. Experiment design and setup

We noticed the experimental flaws pointed out by Musgrave
et al. [17] in the current literature of deep metric learning. In our
experiment design, four principles are held. 1. No sophisticated im-
age augmentation is adopted. Images from all the datasets are re-
sized to 256x256 and then randomly cropped to 224x224. the
way of data augmentation follows with the configurations in [18].
Namely, the random cropping and random horizontal flips are em-
ployed during training and single cropping is employed during
testing; 2. The Adam optimizer is adopted in the training for all
the loss functions we consider. The output feature size is fixed to
512 for all the pull-out runs; 3. In order to alleviate overfitting, the
parameters in Batch-Norm are frozen; 4. The provided training set

2 https://github.com/CH-Liang/DSDML
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Table 1
Summary over four datasets used in the evaluation.
Datasets #Train #Validation #Test
(#Images/#Class)
In-shop [14] 19,412/3,000 6,470/997 26,830/3,985
Deepfashion2 [4]  127,149/11,538  42,435/6,621  28,556/3,031
CUB200 [25] 4,360/74 1,504/26 5,924/100
Cars-196 [12] 6,018/73 2,036/25 8,131/98
Table 2
Ablation analysis of BD-loss on In-shop test set. 1, =0.2, T, =.9 and
7, =0.1.
Recall@ Dim. 1 10 20 30 40 50
BD 512 85.4 95.3 96.8 97.4 97.8 98.1
BD+T 512 866 959 973 978 982 984
BD+W 512 87.4 97.0 98.1 98.4 98.6 98.7
BD* 512 87.6 97.3 98.3 98.6 98.8 98.9

are divided into two. 25% training samples are set aside for valida-
tion and the other 75% are used in training. Above experiment de-
sign is to guarantee that the observed performance improvements
are from the proposed dynamic sampling instead of the underlying
tricks. The results from other relevant works are cited for refer-
ence. However, these results are not literally comparable to ours as
the above principles are not necessarily held in the referred paper.

Following the convention in the literature, we report our perfor-
mance in terms of Recall@K. To be line with the evaluation conven-
tion on different benchmarks, difference series of Ks are taken on
different datasets. All the experiments are carried out on a server
with NVIDIA GTX 1080 Ti GPU setup.

4.2. Datasets and evaluation protocols

For fashion search, datasets In-Shop (also known as Deepfash-
ion) [14] and Deepfashion2 [4]| are adopted in the evaluation.
Dataset In-Shop is a collection of fashion product images crawled
from online shopping websites. For dataset Deepfashion2, it is com-
prised of images both from online shops and users. Consider-
able portion of the images are directly collected from Deepfash-
ion. For Deepfashion2, the retrieval is defined as user-to-shop query.
Namely, the images uploaded by the users are treated as queries.
The same product images crawled from online shopping websites
are treated as the search targets. It is more challenging than In-
Shop task as it is a cross-domain search problem. Since the test set
for Deepfashion2 is not released yet, the validation set is treated as
the candidate dataset for search evaluation.

For fine-grained image search, CUB-200-2011 [25] and CARS-
196 [12] are adopted, both of which are the most popular eval-
uation benchmarks in deep metric learning. The details about
how each dataset is divided into training/validation/testing set are
shown in Tab. 1.

4.3. Ablation study

In the ablation study, we first investigate the contributions
from flexible threshold (given by Eq. (7)), the dynamic sampling
and their combination. Afterwards, the choices of three similarity
thresholds T, 7p, and 7, are verified. All the experiments in this
part are carried out with the backbone of Inception.

In the first experiment, the BD-loss that is integrated with sim-
ple thresholding with tp, 7, and In Eq. (7) is given as “BD+T".
While BD-loss integrated with two re-weighting terms only is given
as “BD+W". BD-loss integrated with both is given as BD*. The re-
sults of these three runs on In-shop are shown in Table 2. The re-
sult from BD-loss is treated as the comparison baseline.
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Fig. 4. The performance trends of BD+T and BD* on CUB200 validation set as t,
varies. In the experiment, 7, and 7, are fixed to 0.9 and 0.1 respectively.
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Fig. 5. The performance trend of BD+T and BD* on CUB200 validation set as 7, and
Ty vary. 1, is fixed to 0.2.

As shown in the table, both schemes achieve consistent im-
provement. On average, the dynamic sampling brings more con-
siderable improvement than simple thresholding. The best perfor-
mance is observed when two schemes are integrated as a whole.
This basically indicates they are complementary to each other. In
the following experiments, all the four loss functions we study
here are integrated with these two enhancement schemes.

In the above experiment, three similarity thresholds, namely t,
Tp, and 1, are fixed to 0.2, 0.9 and 0.1 respectively. In this exper-
iment, we are going to verify whether the settings for these three
thresholds are appropriate. The study is carried out on CUB-200
dataset. The BD-loss is adopted. The parameter 7}, is verified first.
In this experiment 7, and 7, are fixed to 0.9 and 0.1 respectively.
In the second study, 7, is fixed to 0.2, while different couplings of
7p and 1, are tested.

As shown in Fig. 4, the search performance of “BD+T” and “BD*”
fluctuates as 7, varies from 0.1 to 0.9. In general, relatively higher
performance is observed as t;, is set to low similarity value. The
highest performance is reached for both “BD+T” and “BD*” as tj, =
0.2. As a result, t;, is fixed to 0.2 in the rest of experiments. The
performance trend of “BD+T” and “BD*” on CUB-200 is shown in
Fig. 5 as different couplings of 7, and 7, are tested. As shown in
the figure, the best performance is reached both for “BD+T” and
“BD*” as 1, and 1, are set to 0.9 and 0.1 respectively. In the rest of
our experiments, 7, and 7, are fixed to this setting.
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Table 3 Table 4
Comparison with the state-of-the-art approaches on In-Shop. Comparison with the state-of-the-art approaches on Deepfashion2
Recall@ Dim. 1 10 20 30 40 50 Recall@ Dim. 1 5 10 20
FashionNet! [14] 4096 530 730 760 770 79.0 80.0 Match R-CNN¥ [4] 256 26.8 - 57.4 66.5
Dividet [21] 128 857 955 969 975 - 98.0 Angulart [26] 128 32.4 47.9 55.3 62.3
ABEF [11] 512 873 967 979 982 985 987 Hard Triplet! [7] 128 32.4 48.9 56.0 63.2
MICH [19] 128 882 970 - 980 - 98.8 N-Pairt [23] 128 32.8 50.1 57.9 64.8
Inception BD 512 854 953 968 974 978 98.1 MIC [19] 512 38.1 52.1 59.3 66.3
BD* 512 876 973 983 986 988 989 Divide [21] 512 39.4 54.4 61.5 68.5
LF 512 381 672 749 789 814 834 Inception BD 512 39.6 54.4 61.8 69.3
LF* 512 867 963 976 981 984 985 BD* 512 40.2 56.1 62.9 69.5
MS 512 858 957 972 978 981 984 LF 512 15.3 26.8 33.9 416
MS* 512 880 970 981 985 987 989 LF* 512 40.6 57.1 65.2 71.2
TP 512 812 937 957 966 972 976 MS 512 40.5 56.5 63.7 70.8
TP* 512 834 945 962 970 974 97.8 MS* 512 42.2 58.4 65.7 72.3
Resnet-50 BD 512 80.7 925 944 955 961 96.7 TP 512 37.4 52.4 60.3 67.5
BD* 512 813 936 954 962 967 97.1 TP* 512 39.3 55.2 62.9 70.4
LF 512 28.8 590 67.6 723 755 779 Resnet-50 BD 512 31.3 45.7 525 60.2
LF* 512 785 926 946 956 962 96.7 BD* 512 32.4 47.0 53.9 61.0
MS 512 80.8 919 943 955 962 96.6 LF 512 11.2 21.8 27.8 35.0
MS* 512 819 929 947 957 963 96.7 LF* 512 33.5 48.6 56.6 65.1
TP 512 76.1 905 930 942 949 955 MS 512 34.5 48.9 56.1 63.5
TP 512 782 914 935 944 951 956 MS* 512 35.8 51.0 58.4 66.2
- TP 512 30.1 45.4 53.1 61.3
¥ results are cited from the referred paper. TP 512 35.3 50.3 575 65.0
¥ results are cited from the referred paper.
4.4. Fashion search
Table 5
. . . Comparison with the state-of-the-art approaches on CUB200.
In this section, the effectiveness of the proposed enhancement
strategy on four loss functions is studied in fashion search task. Recall@ Dim. 1 2 4 8 16 32
Representative approaches in the literature on this task are con- ABE! [11] 512 606 715 798 874 - -
sidered in the study. FashionNet [14] and Match R-CNN [4] are Divife* [21] 128 659 766 844 906 - -
treated as the comparison baselines for In-Shop and Deepfashion2 MIC* [19] 128 661 768 856 - - -

. . Inception BD 512 616 718 818 886 932 963
respectively. They are proposed along with these two benchmarks. BD* 512 618 733 830 896 940 969
The fashion search is treated as a sub-task under the multi-task LF 512 462 587 701 801 872 926
learning framework. In addition, recent deep metric learning ap- LF* 512 584 695 786 863 91.6 952
proaches Divide and Conquer (Divide) [21], Mining Interclass Char- Ms 512 626 735 821 889 932 965
acteristics (MIC) [19], Angular loss (Angular) [26], Batch hard triplet %S &533 g?'é ng'g 33'3 g?'g g‘;'g g;'l
loss (Hard Triplet) [7] and N-Pair loss (N-Pair) [23] are also consid- TP* 512 546 668 772 847 904 944
ered in the comparison. Among these approaches, MIC learns aux- Resnet-50 BD 512 284 393 498 623 738 832
iliary encoder for the visual attributes, which induces extra com- BD* 512 402 522 637 745 832 906
putational costs. Attention-based Ensemble (ABE) [11] is the repre- LF 512 152 226 321 438 579 713

tative approach of ensemble deep metric learning. Due to the Lo 5120329 447 571 685 79.1 870
sen pproach ; p 8 MS 512 440 571 684 786 860 954
difference in training settings, the results from these papers are MS* 512 451 582 698 798 86.6 958
not literally comparable to ours. The results are cited for reference TP 512 255 366 489 615 727 828

TP* 512 285 391 509 631 744 843

only.

The performance on In-Shop and Deepfashion2 is shown on
Tables 3 and 4 respectively. As shown in Tables 3 and 4, all the
four loss functions that are integrated with dynamic sampling
terms demonstrate considerable performance improvement. The
improvement ranges from 10-100% for different loss functions. Be-
ing integrated with the dynamic sampling, the performance from
all loss functions with both backbones becomes competitive to or
even outperforms the most effective approach in the literature,
in particular on the challenging dataset Deepfashion2. Although
ResNet-50 turns out to be more powerful than Inception in many
scenarios, Inception shows better performance in our implemen-
tation. When no additional training tricks are involved, the fea-
tures from pre-trained ResNet-50 lack of discriminativeness be-
tween samples within the same category (e.g., clothes). Accord-
ing to our observation, Inception is more effective in dealing with
fine-grained search problems. An interesting observation is that the
performance difference between different loss functions becomes
much smaller when being all supported by the dynamic sampling.

The search result samples from MS and MS* on In-Shop are
shown in Fig. 6. As shown in the figure, the false positives re-
turned by MS are visually very similar to the queries. They are the
hard samples. When being integrated with the weighting terms,
the fine-grained details carried by these hard samples can be well
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f results are cited from the referred paper.

learned by MS* at its later stages. As shown in the figure, the MS*
turns out to be robust to severe variations in fine-grained texture,
view point, and color.

4.5. Fine-grained image search

In this section, the performance of the enhanced loss functions
is evaluated on CUB-200-2011 and CARS-196 for fine-grained im-
age search. Three state-of-the-art deep metric learning approaches
Divide [21], ABE [11] and MIC [19] are considered in the compar-
ison. The performance results on these two datasets are shown in
Tables 5 and 6 respectively.

The modified loss functions demonstrate consistent improve-
ment over the original ones. The improvement is significant on
lifted structure loss. Similar as the fashion search task, the perfor-
mance gap becomes minor among different loss functions when
dynamic sampling is adopted. Due to the small scale of CUB-
200-2011 and CARS-196, the impact of hyper-parameters becomes
greater which leads to significant performance drops with ResNet-
50 backbone. Overall, BD* and MS* perform competitively well
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Fig. 6. Top-2 search results on In-Shop. The queries are shown on the left and followed by retrieved top-2 results from MS and MS* with Inception as the backbone. Our
approach improves the performance significantly and shows stable performance even under severe transformations.

Table 6
Comparison with the state-of-the-art approaches on Cars-196.

Recall@ Dim. 1 2 4 8 16 32

ABE? [11] 512 852 905 940 961 - -

Dividet [21] 128 846 90.7 941 965 - -

MICE [19] 128 826 891 932 - - -

Inception BD 512 743 83.0 889 932 963 98.1
BD* 512 75.7 844 906 948 972 98.8
LF 512 36.1 476 607 718 815 885
LF* 512 69.0 789 860 916 952 97.6
MS 512 77.0 843 898 935 962 98.0
MS* 512 780 85.6 90.8 943 96.7 984
TP 512 51.1 624 726 802 867 91.8
TP* 512 622 722 805 87.0 921 955

Resnet-50 BD 512 553 66.1 752 832 889 932
BD* 512 56.6 672 766 838 89.6 93.7
LF 512 226 323 433 559 684 79.6
LF* 512 532 654 751 827 888 934
MS 512 61.7 722 808 878 929 962
MS* 512 658 757 832 891 935 962
TP 512 451 566 66.7 759 83.6 89.2
TP* 512 46.2 579 683 772 847 904

f results are cited from the referred paper.

with the state-of-the-art approaches, namely Divide and MIC. Com-
pared to Divide and MIC, our approach is much lightweight. Ap-
proach Divide requires to learn several sub-embedding spaces.
Similarly, extra computation is required in MIC to train the aux-
iliary encoder for the latent visual attributes. In contrast, consider-
able improvement from our approach is achieved by injecting two
re-weighting terms into the loss function. No sophisticated modi-
fication on the training process or the network architecture is re-
quired.
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Overall, BD-loss and multiple similarity loss show considerably
superior performance over other loss functions on two different
tasks. With the proposed dynamic sampling strategy, both mod-
els show performance boost on two tasks and across different pa-
rameter settings. In particular, the performance from the enhanced
BD-loss and multiple similarity loss is better than or close to state-
of-the-art approaches on two tasks.

5. Conclusion

We have presented a simple but effective dynamic sampling
strategy to boost the performance of deep metric learning. In our
solution, the dynamic sampling is formulated as two terms that
are compatible with various loss functions. These two re-weighting
terms dynamically tune the impact that a training pair contribute
to the loss function. This allows the network to learn the concepts
from easy to hard, which is comparable to the cognitive process
of human beings. With this dynamic sampling strategy, the perfor-
mance gap among different loss functions becomes minor. Consis-
tent improvement on two tasks is observed with all the loss func-
tions on two popular backbones.
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