
Neurocomputing 448 (2021) 130–139
Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier .com/locate /neucom
A joint model for IT operation series prediction and anomaly detection
https://doi.org/10.1016/j.neucom.2021.03.062
0925-2312/� 2021 Elsevier B.V. All rights reserved.

⇑ Corresponding author.
E-mail address: wlzhao@xmu.edu.cn (W.-L. Zhao).
Run-Qing Chen a, Guang-Hui Shi b, Wan-Lei Zhao a,⇑, Chang-Hui Liang a

a Fujian Key Laboratory of Sensing and Computing for Smart City, School of Information Science and Engineering, Xiamen University, Xiamen 361005, Fujian, China
bBonree Inc., Beijing, China

a r t i c l e i n f o a b s t r a c t
Article history:
Received 26 June 2020
Revised 8 March 2021
Accepted 23 March 2021
Available online 29 March 2021
Communicated by Zidong Wang

Keywords:
Time series
Unsupervised anomaly detection
Robust prediction
Status prediction and anomaly detection are two fundamental tasks in automatic IT systems monitoring.
In this paper, a joint model Predictor & Anomaly Detector (PAD) is proposed to address these two issues
under one framework. In our design, the variational auto-encoder (VAE) and long short-term memory
(LSTM) are joined together. The prediction block (LSTM) takes clean input from the reconstructed time
series by VAE, which makes it robust to the anomalies and noise for prediction task. In the meantime,
the LSTM block maintains the long-term sequential patterns, which are out of the sight of a VAE encoding
window. This leads to the better performance of VAE in anomaly detection than it is trained alone. In the
whole processing pipeline, the spectral residual analysis is integrated with VAE and LSTM to boost the
performance of both. The superior performance on two tasks is confirmed with the experiments on
two challenging evaluation benchmarks.

� 2021 Elsevier B.V. All rights reserved.
1. Introduction impact the statuses are hard to be completely revealed. Four sam-
Due to the steady growth of cloud computing and the wide-
spread of various web services, a big volume of IT operation data
are generated daily. IT operations analytics aims to discover pat-
terns from these huge amounts of time series data. Such that it is
able to automate or monitor an IT system based on the operation
data. It is widely known as artificial intelligence for IT operations
(AIOps) [1]. It has been explored in recent works [2–7]. Two funda-
mental tasks in AIOps are future status prediction and anomaly
detection on the key performance indicators (KPIs), such as the
time series about the number of user accesses and memory usage,
etc.

In general, a sequence of KPIs is given as a univariate time series
X ¼ x1; . . . ; xt; xtþ1; . . . ; xn�1; xnf g, where the subscript represents the
timestamp and xt is the real-valued status at one timestamp. Given
the statuses from timestamp 1 to t are known, the anomaly detec-
tion is to judge whether the status on timestamp t significantly dif-
fers from the majority of a time series. While the prediction is to
estimate the status of the next timestamp xtþ1. In practice, these
two tasks are expected to work jointly to undertake automatic per-
formance monitoring on the KPIs. Most of the KPIs are the reflec-
tions of the user behaviors, habits, and schedule [6]. Since these
events are largely repeated periodically, the KPI sequences are
mostly stationary and periodic on a daily or weekly basis. There-
fore they are believed predictable though the latent factors that
ple sequences are shown in Fig. 1. As shown in the figure, the series
are mixed with anomalies which are in a rare occurrence and
demonstrate drifting patterns.

Performing anomaly detection and prediction on these time
series are non-trivial. Firstly, due to the painstaking as well as
error-prone annotation, it is unrealistic to expect a large number
of labeled data available to train a detection model. As a result,
unsupervised anomaly detection is preferred. Secondly, since the
anomalies appear in various forms, the prediction model is
expected to be robust to the noise. In the existing solutions, these
two issues are addressed separately. In unsupervised anomaly
detection, generative models such as variational auto-encoders
(VAEs) [8] are employed [9]. The time series are sliced by a sliding
window [2,6]. The sequence within one window is therefore
encoded/decoded by VAE. Anomaly statuses are identified as they
are considerably different from the decoded normal statuses. Since
all the statuses including anomalies in the sequence are fed to train
the model, the interference from the noise and anomalies becomes
inevitable. This leads to unstable performance. RNN based models
are usually adopted in prediction. However, due to the high model
complexity of LSTM [10], they are sensitive to the anomalies and
noise. This problem is alleviated by ensemble learning [11,12],
whereas several folds of computational overhead are induced.

Different from the existing solutions, a joint model called pre-
dictor and anomaly detector (PAD) is proposed in this paper. In
our solution, VAE and LSTM are integrated as a whole to address
both robust prediction and unsupervised anomaly detection. In
addition, spectral residual (SR) [13] is plugged into the processing
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Fig. 1. Sample segments from four KPI series. The anomalies are shown in red and missing statuses are shown in orange.
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pipeline to boost the performance. Specifically, a weight has been
assigned by SR to the status at each time slot to indicate the degree
of being a normal status.

The advantages of such a framework are at least two folds.

� Firstly, VAE and LSTM have been integrated seamlessly to fulfill
both anomaly detection and prediction. The VAE block is in
charge of anomaly detection and LSTM is adopted for prediction.
On the one hand, VAE considerably reduces the impact from the
anomalies and noise on the prediction block. On the other hand,
LSTM helps VAE to maintain the long term sequential patterns
that are out of the VAE encoding window. This design leads to
the better performance for both tasks than they work alone.

� Secondly, spectral residual analysis is adopted as a pre-
processing step in the whole pipeline. It helps to suppress the
apparent anomalies and therefore alleviates their interference
to the training of VAE and LSTM.

Although our model is conceptually similar as the models used
in anomaly detection [14] and natural language processing [15],
which integrate both recurrent neural network (RNN) and VAE
[16], the structure of our model is different. Moreover, our model
is capable of robust prediction. To the best of our knowledge, this
is the first work that addresses both prediction and unsupervised
anomaly detection under one joint model.

The remainder of this paper is organized as follows. Related
works about prediction and unsupervised anomaly detection are
presented in Section 2. The proposed model, namely PAD is pre-
sented in Section 3. The effectiveness of our approach both for pre-
diction and anomaly detection is studied on two datasets in
Section 4. Finally, Section 5 concludes the paper.
2. Related work

2.1. Prediction on time series

Prediction on the time series is an old topic as well as a new
subject. On the one hand, it is an old topic in the sense it could
131
be traced back to nearly one century ago [17]. In such a long period
of time, classic approaches such as ARIMA [18], Kalman Filter [19],
and Holt-Winters [20] were proposed one after another. The
implementations of these classic algorithms are found from recent
packages such as Prophet [21] and Hawkular [22]. Although effi-
cient, the underlying patterns are usually under-fit due to the
low model complexity. On the other hand, this is a new issue in
the sense that the steady growth of the big volume of IT operation
data, which are mixed with the noise and anomalies, impose new
challenges to this century-old issue.

Recently LSTMs [10] are adopted for prediction due to their
superior capability in capturing long-term patterns on temporal
data. A recent work integrates attention mechanism into RNN as
the nonlinear autoregressive exogenous model [23]. However,
RNN turns out to be sensitive to the anomalies and noise. In order
to enhance its robustness, the constraint on the excessive inputs or
gradients is introduced during the training [24,25]. However, only
limited improvement is observed. Moreover, in [11,12], multiple
prediction models are trained from one time series, and the predic-
tion is made by integrating multiple predictions into one. LSTM is
also modified to perform online prediction in [26]. The learned
model is adapted to the emerging patterns of time series by bal-
ancing the weights between the come-in gradient and historical
gradients.
2.2. Anomaly detection on time series

First of all, data annotation on the time series is expensive and
error-prone. It also requires the annotator to be familiar with a
specific domain [27,28]. In addition, compared to the normal sta-
tuses, the anomalies are in rare occurrences. This makes the train-
ing suffer from the class imbalance when it is addressed as a
classification problem. Therefore, most of the research in the liter-
ature address the detection in an unsupervised manner.

The first category of anomaly detection approaches is built upon
the prediction. Specifically, when the status is far apart from the
predicted status at one timestamp, it is considered an anomaly.
In [29], ARIMA is employed for prediction. The detection is fulfilled
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based on the predicted status. However, due to the poor prediction
performance of ARIMA, precise anomaly detection is not achiev-
able. Recently, a stacked LSTM [30] is proposed to perform anom-
aly detection due to its good capability in capturing patterns from
the time series with lags of unknown duration. However, the
uncertainty of the prediction model itself is overlooked in this
approach. To address this issue, the research from Uber introduced
Bayesian networks into LSTM auto-encoder. MC dropout is adopted
to estimate the prediction uncertainty of the LSTM auto-encoder
[3,7]. In addition to the uncertainty of the prediction model, histor-
ical prediction errors are considered in a recent approach from
NASA [31]. In recent approach [32], LSTM is placed in-between
the encoder and the decoder of VAE to predict the next embedding.
As LSTM is sensitive to the noise and anomalies, its detection per-
formance is unstable. All the aforementioned detectors rely largely
on the performance of the prediction. Inferior performance is
observed when the time series show drifting patterns or they are
mixed with the noise.

Another category of anomaly detection approaches is built upon
the assumption that the distribution of anomalies considerably dif-
fers from the normal status and they are in a rare occurrence. In the
early approaches of this category, the detection is simply based on
3r rule. Under the similar principle, recent approaches SPOT and
DSPOT [33] are proposed based on Extreme Value Theory. Since
the normal statuses may be under several different distributions,
Gaussian mixture model (GMM) is proposed to adapt to the data
distribution. Different from GMM, one-class SVM [34] transforms
the sequential data directly into another space by kernel function,
where the anomalies could be discriminated by the classification
plane. However, the performance of one-class SVM turns out to
be poor mainly because the kernel is fixed. Due to its superior
capability in non-linear mapping, VAE is introduced in [2,6] to
encode the sequence within each sliding window. LSTM is incorpo-
rated as the layers of VAE [35–37] to capture the long term pat-
terns in a series. Since LSTM is sensitive to noise, the model is
unstable and hard to converge during the training stage. Observing
that the anomalies could be distinguished at the early steps of a
decision tree, iForest [38] and robust random cut forest [39] are
proposed. Recently, spectral residue analysis (SR), which is origi-
nally used on saliency detection in computer vision, is introduced
for anomaly detection [4]. As the saliency is inconsistent with the
anomaly in some cases, it turns out to be fast, whereas the perfor-
mance is unstable.

Recently, supervised solution is also seen in the literature [4]. In
order to fulfill the training, the anomalies are synthesized and
injected into the original time series in SR-CNN [4]. Additionally,
a large amount of extra time series are synthesized and used in
the training to prevent the model from overfitting. However, the
synthesized statuses cannot reflect the real distribution of anoma-
lies in practice, which leads to unstable performance of the trained
model.

In the above VAE based detection approaches, the judgment is
made mainly based on the distribution difference between the nor-
mal and abnormal statuses. Since the noise and anomalies are also
fed into the model training, these signals are unexpectedly recon-
structed as the normal ones. As a result, the boundary between
normal and abnormal statuses is blurred. To address this issue,
SR [13] is integrated into our model to suppress the anomalies
before they are fed into the VAE block.
A B

ab c

Fig. 2. Fill missing statuses by our way. The statuses between A and B are missing.
The linear interpolation is shown in orange. The linear interpolation with the same
time slot from the adjacent periods is shown in green, i.e., fill a with the
interpolation of b and c.
3. The proposed model

In this section, a framework integrated with LSTM and VAE for
both unsupervised anomaly detection and robust prediction is
presented.
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3.1. Preprocessing

As shown in Fig. 1, it is not unusual that the operation statuses
are missing on some timestamps due to the sudden server down or
network crashes. The conventional schemes are zero filling and lin-
ear interpolation, which could damage the periodicity of time ser-
ies. In our solution, the missing statuses are filled with adjacent
periods. Specifically, when the missing duration is less than or
equal to M time units, the linear interpolation [40] is performed
by filling the missing statuses with the adjacent statuses. When
the missing duration is greater than M time units, the linear inter-
polation is performed with the status of the same time slot from
the adjacent periods as shown in Fig. 2. In our implementation,
we choose one day as the period, which is safe as IT operations
are largely relevant to human daily activities. M is set to 3 and 7
for hour-level and minute-level series respectively. The periodicity
recovery by this way is crucial to the processing in the later stages,
such as spectral residual analysis in the frequency domain.

After filling the missing statuses, each time series is undergone
z-score normalization. Then each time series is cut into segments
with a sliding window. The window size is X. Similar to the exist-
ing works, the step size of the window sliding is fixed to 1. The sta-
tuses in one segment are given as xt ¼ xt�Xþ1; . . . ; xtf g. After
segmenting the time series with the sliding window, the time ser-
ies is decomposed into a collection of segments viz.,
G ¼ xX; . . . ;xt ; . . . ;xnf g. Every neighboring L segments are orga-
nized into a sequence and are fed to the network for training. Such
that the temporal clues beyond one segment are maintained.

3.2. Normality confidence weighting

Spectral residual (SR) analysis is a traditional signal processing
tool. It has been shown useful in identifying salient/ irregular pat-
terns in 1D or 2D signals [13]. In recent work [4], it has been
employed in the anomaly detection on time series data [4] for its
efficiency. Similar as [4], SR is employed in our processing pipeline.
However, different from [4], it is only employed to assign a normal-
ity weight to the status of each timestamp. This weight will be later
used to assist the training of our detection and prediction blocks.

Firstly, the log amplitude spectrum of a segment xt is obtained
by Fourier transform and log transformation. In the second step,
the spectral residual is obtained by subtracting the log amplitude
spectrum from its mean. Finally, the spectral residual is trans-
formed back to the time domain. It is the resulting 1D saliency
map S xtð Þ. Given the last point S xtð Þ and the local average of the last
point S xtð Þ in the saliency map S xtð Þ, the normality confidence at
timestamp t is estimated as

wn xtð Þ ¼ 1� 1
1þ exp � D xtð Þ � D0ð Þð Þ ; ð1Þ

where D xtð Þ ¼ S xtð Þ � S xtð Þ
S xtð Þ :
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In Eq. (1), D xtð Þ indicates the degree that the status at t differs
from normal and D0 is a constant. As a result, wn xtð Þ basically indi-
cates the confidence that xt is normal. Its value ranges from 0 to 1.
wn xtð Þ of the anomalies is expected to be close to 0. As we show
later, this confidence score will be integrated into the VAE-LSTM
learning framework to alleviate the interference from the anoma-
lies. In addition, the confidence scores of statuses in segment xt

are given as wn.

3.3. Anomaly detection

In this paper, we aim to address anomaly detection and predic-
tion under one framework. Let’s consider anomaly detection first.
As shown in Fig. 1, most of the anomalies appear as isolated points.
Assuming that 1. the latent variable of the segment xt , namely z
follows multivariate standard Gaussian distribution
ph zð Þ ¼ N 0; Ið Þ and 2. the anomalies are in a rare occurrence. The
status xt can be largely reconstructed by

x0
t ¼ VAE xtð Þ: ð2Þ
In VAE, as an approximation to the intractable true posterior

distribution ph zjxð Þ, the approximate posterior distribution is
assumed to follow a diagonal Gaussian distribution
q/ zjxð Þ ¼ N lz;r

2
z I

� �
, which is fitted by the encoder. Therefore,

on the encoder side, one segment xt is encoded into lz and rz by
a three-layer encoder. On the decoder side, sampled from
N lz;r

2
z I

� �
; z is decoded into x0

t with a symmetric structure as
the encoder. Based on the evidence lower bound as [8,41], our
VAE is trained with loss function shown in Eq. (3).

LVAE xtð Þ ¼ kwn � xt � x0
t

� �k22 þ bwnKL N lz;r
2
z I

� �kN 0; Ið Þ� �

¼ kwn � xt � x0
t

� �k22 þ
bwn

2
� logr2

z þ l2
z þ r2

z � 1
� �

; ð3Þ

where the first term is the reconstruction loss of xt and the second
term is Kullback–Leibler (KL) divergence between q/ zjxð Þ and ph zð Þ.
wn is the normality confidence of statuses in segment xt (Eq. (1))
and wn is the average over wn. b is a hyper-parameter to balance
the reconstruction accuracy and the consistency between the
learned and the assumed data distribution [42]. The integration of
normality confidence tunes down the impact from anomalies dur-
ing the training as they hold lower weight in Eq. (3). The first term
in Eq. (3) regularizes how well the VAE fits the training data. While
the second term in the equation emphasizes the generalization of
VAE over latent distribution. b in Eq. (3) is a hyper-parameter to bal-
ance these two competing loss functions.

Since the anomalies are in a rare occurrence, the distribution of
these statuses is different from those of the normal statuses. In the
ideal case, these anomalies are not recovered by the decoder. Fol-
Fig. 3. The structure of our model for anomaly detection and prediction. There are two m
and the LSTM block shown inside the green dashed box. After preprocessing, spectral re
segment xt . Segment xt is then fed into VAE and LSTM. For anomaly detection, xt is recon
into an anomaly label by the threshold krr . x0

t is also fed into LSTM to estimate yt for ro
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lowing the practice in [6], the anomaly detection is made based on
the difference between the last status in the segment xt and the
recovered segment x0

t . Namely the difference between xt in
xt�Xþ1; . . . ; xtf g and x0t in x0t�Xþ1; . . . ; x

0
t

� �
is checked. However, dif-

ferent from [6], xt is viewed as abnormal when the absolute error
of xt from x0t is higher than krr . k is fixed on all the time series from
one evaluation dataset and rr is the standard deviation of the abso-
lute errors of xt from x0t . Compared to [6], such a threshold scheme
adapts well to the different distributions of the absolute errors. The
detection is shown as the middle block in Fig. 3.

Due to the symmetric structure of VAE, the size of the input
layer of encoder and the output layer of decoder are set to be the
same as window size X. ReLU is selected as the activation function
for both layers. The number of z dimensions is set to K. The layer of
lz and the layer of rz which learns logrz to cancel the activation
function, are both fully-connected layers. Because of the symmetry
of the auto-encoder, the hidden layers of the encoder and the deco-
der are both two layers with the ReLU activation function, each of
which is with hl units.

To this end, the status at timestamp t could be reconstructed by
VAE. Since only the normal statuses are encoded and decoded,
anomaly detection is as easy as checking the difference between
the decoded status and the input status. However, VAE alone is
unable to fulfill the prediction since VAE is unable to encode/de-
code a future status xtþ1 outside the window. Meanwhile, the
recovered x0

t is expected free of anomalies. If x0
t is used for predic-

tion, the prediction block becomes insensitive to the noise and pos-
sible anomalies. In the following, we are going to show how the
output from VAE is capitalized for prediction by LSTM.

3.4. Prediction

LSTM is employed in our design to fulfill prediction. As shown
in the right part of Fig. 3, LSTM takes the output from the VAE
block, and it is expected to predict xtþ1 based on x0

t . Namely, the
loss function is given as

LLSTM x0
t; xtþ1

� � ¼ wnkxtþ1 � ytk22; ð4Þ
where yt is the predicted status from LSTM. The loss function simply
measures the mean squared error between the true status at times-
tamp t þ 1 and the predicted status yt . In Eq. (4), the normality con-
fidence derived in Eq. (1) is also integrated. Namely, the average
confidence wn for segment xt is used to weigh the loss function.
The contribution of anomalies to the loss function is therefore tuned
down.

The LSTM block takes x0
t as input and fulfills the prediction.

Specifically, given the output and the state of the previous times-
tamp are ht�1 and ct�1, the output and the state of the current
ajor blocks in the network, namely the VAE block shown inside the blue dashed box
sidual analysis is used to produce the normality confidence for each status in one
structed as x0

t by VAE. The difference between input status xt and x0
t is transformed

bust prediction.
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timestamp from LSTM are ht and ct respectively [10]. Namely we
have

ht; ct ¼ LSTM x0
t ;ht�1; ct�1

� �
: ð5Þ

In order to map ht to the predicted status yt , a fully connected
layer is attached to the LSTM block. The predicted status yt is com-
puted with Eq. (6).

yt ¼ wyht þ by ð6Þ
During the training of the whole network, the loss functions of

prediction and unsupervised anomaly detection should be bal-
anced. So the overall loss function for predictor and anomaly
detector (PAD) is

LPAD xt ; xtþ1ð Þ ¼ LVAE xtð Þ þ kLLSTM x0
t ; xtþ1

� �

¼ kwn � xt � x0
t

� �k22
þ bwnKL N lz;r

2
z I

� �kN 0; Ið Þ� �þ kwnkxtþ1

� ytk22; ð7Þ

where LVAE xtð Þ is the loss function of unsupervised anomaly detec-
tion and LLSTM x0

t; xtþ1
� �

is the loss function of robust prediction. k is
a hyper-parameter to balance the training over these two tasks. The
KL divergence for the VAE block (given in Eq. (3)) emphasizes the
latent constraint of VAE, which basically indicates how robust the
reconstructed output x0

t from VAE when anomalies or noise appear.
When its weight in the overall loss function (LPAD) is high, the out-
put (x0

t) from the VAE block is cleaner. The cleaned statuses are
input to LSTM for prediction. Therefore, as the key hyper-
parameter of our model, b controls the generalization of anomaly
detection block and impacts the robustness of prediction as well.

Although training is required in our network, it is essentially an
unsupervised approach in the sense that no anomaly annotation is
required. The training largely allows the VAE and LSTM to adapt to
the distribution of the time series. The prediction block can be
viewed as a natural extension over the anomaly detection block
as we make full use of the output from VAE. The reconstructed seg-
ment from the VAE reduces the noise in the raw input data. With
the clean input, the LSTM block is able to capture the regular tem-
poral patterns. On the one hand, it fulfills the prediction task with
less interference from noise. On the other hand, it propagates the
long term temporal clues back to the VAE block to boost its perfor-
mance in anomaly detection. As will be revealed in the experi-
ments, both blocks perform better than they work alone.

To the best of our knowledge, this is the first piece of work that
integrates prediction and anomaly detection into one framework.
Fig. 4. Four sample series (in blue color) from dataset Yahoo along with their prediction
demonstrate irregular patterns which are hardly predictable. The prediction results from
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The anomaly detection block and the prediction block are built
upon each other. This is essentially different from [3,7,31], which
are trained solely for prediction but used for detection. Our model
is essentially different from VAE-LSTM in [32] in the sense that
LSTM is not employed to perform anomaly detection. Instead, it
is in charge of prediction only.
4. Experiments

In this section, the effectiveness of the proposed approach is
studied in comparison to the approaches that are designed for pre-
diction and unsupervised anomaly detection in the literature.
Datasets KPI [43] and Yahoo [44] are adopted in the evaluation.
KPI dataset was released by the AIOps Challenge Competition
[43]. It consists of desensitized time series of KPIs from real-
world applications and services. The raw data were harvested from
Internet companies such as Sogou, eBay, and Alibaba. They are all
minute-level operations time series. In our evaluation, this dataset
is used for both anomaly detection and prediction. Yahoo dataset
is released by Yahoo Labs for anomaly detection evaluation. It con-
sists of both real and synthetic time series. Most of the time series
from this dataset demonstrate irregular patterns across the whole
time span. Such kind of patterns is believed to be unpredictable [4].
Four sample series from Yahoo along with the prediction results
from LSTM are shown in Fig. 4. As a result, this dataset is used to
evaluate anomaly detection performance only following the con-
vention in the literature [4]. The brief information about these
two datasets is summarized in Table 1.

On KPI dataset, D0 in Eq. (1) is empirically set to 4.1. b in Eq. (3)
is set to 0.01. As b is crucial to our model, this setting will be val-
idated by an ablation study. k in Eq. (7) is set to 1. The segment
sequence length L is set to 256. Other hyper-parameters are config-
ured according to [6]. On Yahoo dataset, D0 in Eq. (1) is set to 3.1. k
is set to 10. The window size X is set to 30. hl and the size of ht are
set to 24. The learning rate is set to 1e-2. The rest of the configura-
tions on the training is kept the same as on KPI dataset. The con-
figurations in SR is set following [4]. For the readers who want to
repeat our work, the following principles in parameter-tuning are
recommended.

1. Hyper-parameter k is set according to the preference of the two
tasks, namely prediction and anomaly detection. In our practice,
anomaly detection is preferred over prediction;

2. Hyper-parameter b is set as a trade-off between accuracy and
generalization of PAD;

3. D0 is set according to the performance of SR on the dataset.
results (in orange color) obtained by LSTM. As shown in the figures, the time series
LSTM turn out to be very poor.



Table 1
Summary over the datasets.

Dataset # Series # Time-stamps # Anomalies Granularity

KPI 29 5,922,913 134,114 (2.26%) Minute
Yahoo 367 572,966 3,896 (0.68%) Hour
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4.1. Evaluation protocol

Following [4,43], the first half of the time series is used to train
the model, while the second half is used for evaluation in both
tasks. In the prediction task, Mean Squared Error (MSE) (Eq. (8)),
Root Mean Squared Error (RMSE) (Eq. (9)) and Mean Absolute Error
(MAE) (Eq. (10)) are used in the evaluation.

MSE ¼ 1
n�X

Xn�1

t¼X
xtþ1 � ytð Þ2 ð8Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n�X

Xn�1

t¼X
xtþ1 � ytð Þ2

vuut ð9Þ

MAE ¼ 1
n�X

Xn�1

t¼X
jxtþ1 � yt j; ð10Þ

where X is the window size and yt is the predicted value from the
LSTM block. The final performance score is obtained by taking the
average over MSE, RMSE, and MAE respectively of all the time series
from one dataset.

In addition, as the anomalies in one time series are believed to
be unpredictable, the scores of MSE, RMSE, and MAE are reported
under three setups. Specifically, in Setup-1, the performance of
our prediction approach is studied when the anomalies are consid-
ered as part of the ground-truth. In Setup-2, the time slots in the
ground-truth where anomalies appear are replaced with estimated
normal status with the scheme presented in Section 3.1. In Setup-
3, the time slots where anomalies appear are simply ignored in the
evaluation.

For the anomaly detection evaluation, the operators in practice
do not care about whether an anomaly is detected successfully at
the moment it appears. Instead they care about in which time span
an anomaly is successfully detected within a small tolerable delay.
As a result, the strategy in [4,6,43] is adopted in the evaluation. As
illustrated in Fig. 5, if the model detects anomalies no later than
the delay after the start timestamp of the anomaly interval, each
timestamp in the anomaly interval is viewed as a true positive.
Otherwise, each timestamp in the anomaly interval is counted as
a false negative. The delay for adjustment is set to 3 and 7 for
hour-level and minute-level datasets respectively. We evaluate
the detection performance with precision, recall and F1-score by
Eqs. (11)–(13).

precision ¼ #True positive
#True positiveþ#False positive

ð11Þ
Fig. 5. The illustration of the strategy used in the evaluation of anomaly detection.
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recall ¼ #True positive
#True positiveþ#False negative

ð12Þ

F1 � score ¼ 2� precision� recall
precisionþ recall

ð13Þ
4.2. Ablation study

Hyper-parameter b in Eq. (3) balances the reconstruction accu-
racy and latent constraint of VAE. It plays a crucial role in our
model. In the first experiment, we study the performance of our
model as this parameter setting varies from 0.01 to 10.0. In this
study, only the performance on prediction is reported. The similar
performance trend is observable for the anomaly detection task.
The results are presented in Table 2.

As shown in the table, the performance of prediction is poor
when b is set to large values. Large b tunes down the importance
of prediction accuracy in the loss function. Moreover, large b
emphasizes the consistency between learned data distribution
with the assumed data distribution, which leads to the extremely
blurry reconstruction. The same phenomenon is observed in anom-
aly detection. As a consequence, b in Eq. (7) is fixed to 0.01 on both
KPI and Yahoo datasets.

4.3. Robust prediction

The prediction performance of our approach is studied on KPI
dataset. It is compared to representative approaches in the litera-
ture and industry. They are classic approaches such as ARIMA
[18] and Prophet [21]. The latter was recently developed by Face-
book. Grid search is adopted in ARIMA within the range of maxi-
mum order 5 to fine-tune the hyper-parameters. Prophet runs
with default settings. Our approach is also compared to standard
Gated Recurrent Unit (GRU) [46] and LSTM that is popularly used
for prediction. Usually the time series are mixed with the noise
and anomalies, which would impact the performance of LSTM.
We further show the performance of LSTM with relatively clean
data. In this run, LSTM is fed with data of which the apparent
anomalies are replaced with estimated normal status values. This
run is given as LSTM*. In addition, there are another two runs of
our approach are conducted. They are P-AD and PAD�. P-AD under-
takes two-step training. The VAE and LSTM were trained sepa-
rately. This is to study the effectiveness of joint training. In PAD�,
it was configured with joint training, however without confidence
weighting (Eq. (1)). It is to show the improvement we achieve with
the confidence weighting (from SR). For the fair comparison, the
same settings for all the hyper-parameters are shared by all the
above RNN-based models.

The prediction performance is summarized in Fig. 7. As shown
in the figure, the performance from classic approaches is very poor.
Both ARIMA and Prophet show high prediction errors. As pointed
out in [47], the standard ARIMA normally converges to a constant
in long-term prediction when the time series is stationary. In con-
trast, RNN based models such as LSTM, LSTM*, PAD perform signif-
icantly better. In particular, our model PAD achieves the best
performance under Setup-2 and Setup-3. Moreover, a wide perfor-
mance gap is observed between ours and the other RNN based
approaches. As the values of anomalies are far from the normal



Table 2
The prediction performance of PAD with different b on KPI dataset under Setup-2.

b 0.01 0.1 1.0 10.0

MSE 0.1086 0.1125 0.1240 0.1627
RMSE 0.2724 0.2806 0.3007 0.3704
MAE 0.1704 0.1800 0.2007 0.2633
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ones, the prediction errors are large under Setup-1 for all the
approaches. In this case, the performance gap between our
approach and other RNN approaches is narrow. Nevertheless, our
approach still shows the best performance in most of the cases.

Compared to LSTM and PAD�, PAD shows better performance.
This indicates that VAE and SR weighting both help to alleviate
the impact from the noise and anomalies to the LSTM block. Com-
pared to P-AD, PAD also achieves better performance. This shows
that the joint training makes the reconstructed output from VAE
not only robust, but also beneficial to the prediction. Fig. 6 shows
a sample sequence from KPI dataset along with the predicted
results from GRU, LSTM, LSTM*, and PAD. In general, approaches
such as GRU, LSTM and LSTM* are able to predict the status well.
However, many anomalies are produced as they are too sensitive
to the anomalies and noise in training. In contrast, the sequence
predicted by PAD are mixed with considerably fewer anomalies
as the interference from anomalies is suppressed by SR and VAE.
4.4. Unsupervised anomaly detection

Our anomaly detection approach is compared to the representa-
tive approaches in the literature. The considered neural network
based approaches include VAE, DONUT [6], SR-CNN [4], and VAE-
LSTM [32]. The approaches based on conventional models, such
as One-Class SVM (OCSVM) [45], SR, SPOT and DSPOT [5] are also
0
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Fig. 6. The prediction results from GRU, LSTM, LSTM*, and PAD on Sequence-16
from KPI dataset. The original sequences and the ground-truth under Setup-2 are
also presented. For GRU, LSTM, and LSTM*, there are many false predictions due to
the interference from anomalies during the training.
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considered in the comparison. The results of SPOT, DSPOT, SR,
and SR-CNN are quoted directly from [4]. Among these approaches,
VAE shares the same hyper-parameters settings as our VAE block
in PAD. Essentially, DONUT is a variant of VAE. Its hyper-
parameters on KPI dataset are set according to [6]. While on Yahoo
dataset, the hyper-parameters of DONUT are set to be the same as
PAD. As suggested in [32], the window size X on KPI and Yahoo is
set to 24 and 144 respectively. The rest of the configurations are
kept the same as [32]. For OCSVM, the implementation from [48]
is adopted. The optimal hyper-parameter m is searched in (0, 1]
to achieve the best F1-score. In SR-CNN, the CNN model used for
detection is trained with an extra large amount of time series, in
which the anomalies are artificially injected. This is the only super-
vised approach considered in our study. For our approach, besides
the standard configuration, another two runs are pulled out. They
are AD and PAD�. In AD, only VAE block is trained to perform
anomaly detection. This is to study the effectiveness of joint train-
ing with LSTM. In order to study the performance gain from SR
weighting, PAD� is pulled out. In this run, SR confidence weighting
is turned off.

The performance of anomaly detection from all the aforemen-
tioned approaches is presented on Table 3. As shown in the table,
the proposed approach outperforms all the state-of-the-art unsu-
pervised approaches considerably on both datasets. Its perfor-
mance remains stable across two different datasets. In contrast,
the approaches such as OCSVM, DSPOT, DONUT, and SR demon-
strate significant performance fluctuation across different datasets.
VAE-LSTM shows very poor performance on both datasets. It turns
out to be hard for LSTM to capture the temporal patterns in the
embedding space of VAE, since VAE and LSTM are trained
separately.

Compared to the run that trains the VAE block alone (AD), PAD
shows 2% performance improvement on two evaluation datasets.
This indicates the LSTM block is able to propagate back the tempo-
ral clues to the VAE block to boost its performance. Compared to
PAD�, PAD achieves 2% performance improvement due to the SR
confidence weighting. Overall, both joint training and SR boost
the performance of anomaly detection. Although SR-CNN performs
better on KPI dataset, the clean time series are required to support
the training. According to [4], 65 million synthesized points are
used for training, which are around 10 times bigger than the size
of either KPI or Yahoo datasets. In practice, it is unrealistic for each
type of time series data to collect a big amount of anomaly free
data for training. As a result, our model is more appealing over
supervised approaches in practice.
5. Conclusion

We have presented our model (PAD) for both robust prediction
and unsupervised anomaly detection on IT operations. On the one
hand, anomaly detection is fulfilled by VAE with the weighting
from spectral residual analysis. On the other hand, the robust pre-
diction is realized by the LSTM block with the reconstructed sta-
tuses from VAE. The beauty of this design is that both VAE and
LSTM perform better than they work alone for either task. The pre-
diction block (LSTM) takes clean input from reconstructed time
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Fig. 7. The prediction performance of PAD in comparison to ARIMA, Prophet, GRU, LSTM and LSTM* on KPI dataset under three different setups.

Table 3
Performance comparison on Anomaly Detection on KPI and Yahoo. The supervised approach is marked with ‘*’.

KPI Yahoo

Approach F1-score Precision Recall F1-score Precision Recall

OCSVM [45] 0.183 0.144 0.251 0.026 0.013 0.803
VAE-LSTM [32] 0.061 0.033 0.423 0.026 0.014 0.244
SPOT [5] 0.217 0.786 0.126 0.338 0.269 0.454
DSPOT [5] 0.521 0.623 0.447 0.316 0.241 0.458
DONUT [6] 0.595 0.735 0.500 0.501 0.669 0.401
SR [4] 0.622 0.647 0.598 0.563 0.451 0.747
VAE [8] 0.685 0.725 0.648 0.642 0.773 0.549
*SR-CNN [4] 0.771 0.797 0.747 0.652 0.816 0.542
AD 0.726 0.884 0.615 0.737 0.806 0.678
PAD� 0.711 0.757 0.670 0.734 0.881 0.630
PAD 0.739 0.839 0.660 0.755 0.837 0.688
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series from VAE, which makes it robust to anomalies and noise.
Meanwhile, VAE performs better for anomaly detection as LSTM
helps to maintain long-term sequential patterns. Normality confi-
dence weighting by spectral analysis further boosts the perfor-
mance of both. Under this joint learning framework, its
performance is close to or even better than the state-of-the-art
supervised approach.

In some scenarios, the KPIs trend may drift gradually. This
requires the both prediction and detection models to be updated
incrementally. To address this problem, online training is required.
In our future work, the online prediction and detection, as well as
the theoretical interpretation of our approach are worthwhile to
explore.
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