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a b s t r a c t 

Instance search has been conventionally addressed as an image retrieval issue. In the existing solutions, 

traditional hand-crafted features and global deep features have been widely adopted. Unfortunately, since 

the features are not directly derived from the exact area of an instance in an image, satisfactory perfor- 

mance from most of them is undesirable. In this paper, a compact instance level feature representation 

is proposed. The scheme basically consists of two convolutional neural network (CNN) pipelines. One is 

designed for localizing potential instances from an image, while another is trained to learn object-aware 

weights to produce distinctive features. The sensitivity to the unknown categories, the distinctiveness 

to different instances, and most importantly, the capability of localizing an instance in an image are all 

carefully considered in the feature design. Moreover, both pipelines only require image level annotations, 

which makes the framework feasible for large-scale image collections with variety of instances. To the 

best of our knowledge, this is the first piece of work that builds the instance level representation based 

on weakly supervised object detection. 

© 2019 Elsevier B.V. All rights reserved. 
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. Introduction 

Instance search is a retrieval task that allows users to launch

 query with specified visual instance in an image. It requires the

ystem to return the images/videos as well as the location (usu-

lly given as a bounding box), where the specified instance is in

resence. In comparison to conventional image search, it reflects

etter the real needs from practice. For instance, a typical query

ould be a bag worn by a woman on a shopping website, a per-

on in the streetview or a logo on a bottle, etc. Instance search

lso facilitates the task such as image hyper-linking [1] , in which

mages are hyper-linked to each other via the instances shared in

ommon. In the state-of-the-arts, due to the lack of instance level

eature representation, this issue has been addressed by the ap-

roaches that are originally designed for content-based image re-

rieval [2–7] . Most of the features are built either on the image

evel or on the sub-region level despite they are hand-crafted fea-

ures or trained deep features. 

In the last decade, instance search has been treated as a sub-

mage retrieval task. The solution to the instance search is domi-

ated by hand-crafted local features such as scale invariant feature

ransform (SIFT) [8] and speeded-up robust features (SURF) [9] , etc.
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hese features are extracted from saliency regions of images. They

re usually invariant to basic geometric transformations such as

caling and rotation. The instance search is therefore addressed as

 point-to-point feature matching problem between the query and

andidate images. Although encouraging results are achieved [10] ,

he latent difficulties are hard to overcome. First of all, there are

sually several hundreds to several thousands local features ex-

racted from one image. The computation cost of point-to-point

atching would be prohibitively high given there are millions of

mages to be compared. Although this issue has been alleviated

y the encoding schemes such as bag-of-visual word (BoVW) [11] ,

ector of locally aggregated descriptors (VLAD) [12] and Fisher vec-

or (FV) [13] , the features from different instances are embedded

nto one vector, which makes the instance level comparison hard

o achieve or simply impossible. In addition, image local features

re vulnerable to object deformation and out-plane rotation that

re widely observed in the real world. 

In recent years, due to the great success of convolutional neu-

al networks (CNNs) in many computer vision tasks such as image

lassification [14–16] , object detection [17–19] and instance seg-

entation [20,21] , CNNs have been gradually introduced to image

etrieval [22–27] . In the common practice of recent research, CNNs

re trained to be more sensitive to object regions [23,25,26,28] .

uring the feature extraction, higher weights are assigned to ob-

ects regions on the feature maps. Such that resulting features are

ore representative for the latent objects in an image. Unfortu-

ately, this type of feature representation only produces a single

https://doi.org/10.1016/j.neucom.2019.11.029
http://www.ScienceDirect.com
http://www.elsevier.com/locate/neucom
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vector for one image. Features from different objects are simply

mixed up. 

In the recent literature, several attempts have been made to

produce instance level representation via deep learning framework.

Approaches presented in [24,29] are able to produce instance level

feature representation by pooling features from the detected object

region. Although satisfactory performance is achieved, the train-

ing of the network requires object level or pixel level annotations,

which are too expensive to be deployed in the real applications.

In addition, the strong reliance on the visual category annotations

also makes the CNNs only sensitive to known classes. While in

practice, the instance representation is required to be sensitive to

the known as well as the unknown categories 1 , given the fact that

one cannot restrict the query instances to the annotated categories

only. 

In this work, motivated by the recent advances of the weakly

supervised object detection methods [30–33] , a novel instance

level feature representation is proposed. In our solution, two con-

volutional neural network pipelines are integrated. One is designed

to localize the visual instances from images, another is designed to

derive features from the regions supplied by the first pipeline. Both

pipelines require only the image level annotations. The advantages

of such design are at least two folds. 

• In the first pipeline, the bounding boxes of the visual instances

are produced with the weak guidance of class information,

which makes it still sensitive to instances of unknown cate-

gories. 

• In the second pipeline, the trained network is able to capture

the dissimilarity between different visual objects. Such that the

produced features remain discriminative to each other even the

corresponding instances are from the same category. 

The reminder of this paper is organized as follows. The works

related to visual object detection are reviewed in Section 2 . Our

solution to the weakly supervised instance search is presented in

Section 3 . The performance evaluation about our method in com-

parison to the state-of-the-art methods is presented in Section 4 .

Section 5 concludes the paper. 

2. Related work 

Instance-wise feature representation is preferred over global

feature in instance search task since it requires instance level com-

parison and localization. Visual object detection therefore becomes

the key step in the instance level feature design. In this section, the

fully supervised and weakly supervised object detection, which are

the most relevant to our work, are reviewed. 

In general, there are two popular deep learning frameworks

in fully supervised object detection. One is two-stage detection

framework. It first produces a set of region proposals and then

refine them by CNNs. Region convolutional neural network (R-

CNN) [34] , Fast R-CNN [17] and Faster R-CNN [18] are the represen-

tative methods in this category. Another one is one-stage detection

framework, which gets increasingly popular in recent years. The

representative methods are You Look Only Once (YOLO) [35] and

single shot multibox detector (SSD) [36] . They are more efficient

over two-stage methods since no proposal generation step is in-

volved. Generally, two-stage methods outperform one-stage meth-

ods in terms of detection accuracy. Encouraging performance has

been observed when fully supervised object detection or instance

segmentation is adopted for instance level feature representa-

tion [24,29] . Nevertheless, the object level or pixel level annota-

tions are required for the training, which is too expensive to be
1 They are not in any of the annotated classes. 

T  

g  

fi  
ractable in the large-scale context. In addition, the trained model

ecomes insensitive to unknown classes. 

As a result, weakly supervised object detection (WSOD), which

nly requires image level annotations, is preferred. There are sev-

ral popular WSOD methods [30–33] in recent literature. They all

ollow the pipeline of multiple instance learning (MIL) [37] . In the

ipeline, an image is taken as a bag of proposals. Each proposal

n the image is fed to the networks to check whether it keeps

n visual object that is of the same category as image class label.

he disadvantage of MIL is that the detected bounding box may

ot cover a complete latent object. In order to alleviate this is-

ue, method in [33] refines several branches of instance classifiers

nline based on the outputs of previous branches. According to

he method, the proposals are produced on raw images, while the

roposal refinement is undertaken on the feature maps instead.

his inconsistency affects precision of the refined proposals. Apart

rom MIL, there are some proposal-free methods by mining on the

alient regions from deep feature maps and class activation maps.

n [38] , an adversarial complementary learning method is proposed

o discover new and complementary object regions by erasing the

iscovered regions from the deep feature maps gradually. However

his method fails when more than one objects from the same cat-

gory are in presence within an image. Method from [39] boosts

he performance of object detection by mining on the class acti-

ation map, which roughly reflects the object region. In order to

nhance the localization accuracy, method in [40] adopts both the

e-training and re-localization steps during the training. Unfortu-

ately, extra training set with the object level annotations is re-

uired. 

Due to the latent issues of one way or another in the ex-

sting methods, aforementioned WSOD pipelines cannot be di-

ectly adopted for instance search task. In our design, two WSOD

ipelines, namely proposal clustering learning (PCL) [33] and soft

roposal network (SPN) [39] are tailored to fitting into our instance

eature representation. Namely, PCL is adopted mainly to produce

ounding boxes for the latent objects of known and unknown cat-

gories. Its performance is further enhanced by replacing Selective

earch [41] with EdgeBoxes [42] for object proposal generation. In

ddition, in order to avoid background interference, SPN is intro-

uced to assign object-aware weights on bounding boxes to pro-

uce a more discriminative instance feature representation. 

. The proposed method 

In this section, we firstly introduce the overall framework of

he proposed method in Section 3.1 . Thereafter the instance lo-

alization which is based on weakly supervised learning method,

s given in Section 3.2 . With the object bounding boxes sup-

lied by the localization pipeline, the CNN pipeline designed for

eature map weighting and feature extraction is introduced in

ection 3.3 . 

.1. Overall framework 

As discussed in Section 1 , the existing instance level represen-

ations require either object level or pixel level annotations for the

raining set, which makes it hardly feasible in real scenarios. In

ontrast to these works, in our design instance level feature repre-

entation is produced via weakly supervised learning. It only re-

uires image level class labels for the training set. In addition,

ince the bounding box (usually given as a rectangle) does not

over the exact shape of an object, direct feature extraction from

ithin the region may introduce the noises from the background.

o address this issue, a spatial weighting network is introduced to

enerate object-aware weights for features extracted from the re-

ned proposals. The framework of our method basically consists
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Fig. 1. The framework of weakly supervised instance level feature learning. The upper flow shows the instance localization procedure, where coarse proposals are generated 

with edge information from shallow convolution layers of VGG-16. The image and its coarse proposals are therefore fed into a PCL [33] stream to obtain refined proposals. 

The flow on the lower side is the pipeline for assigning object-aware weights on the feature maps of convolutional layers. The first part is nothing more than a soft proposal 

network [39] (inside the blue dashed box). Then feature for each instance is produced by ROI pooling from the proposals supplied by the upper flow on the weighted feature 

map of SPN. 
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i  

a  
f two CNN pipelines. One is trained to produce bounding boxes

or all the latent instances in an image, while another is trained to

earn the object-aware weights for features. The instance level fea-

ure is finally produced by region of interest (ROI) pooling [17] on

he weighted feature maps with the bounding boxes provided from

he first pipeline. The overall framework is shown in Fig. 1 . The

rst pipeline is originally designed for object detection [33] , while

he second pipeline is originally adopted to discover more discrim-

native visual evidence in images [39] . The backbone network for

oth is VGG-16 [15] . Considerable modifications have been made

n both to fit them into our task, which are detailed in the follow-

ng sections. 

.2. Instance localization 

In order to build instance level feature representation, it is crit-

cal to localize each latent instance by a bounding box. In our

ramework, the feature extraction for an individual instance mainly

elies on its bounding box. The bounding box is therefore expected

o cover the discovered instance as precisely as possible. In our de-

ign, edge information from shallow convolutional (conv) layers is

xploited to generate hundreds of object-like proposals by Edge-

oxes. However, it demands high computational cost to extract all

he proposal features of one image to match with the query, which

s unaffordable for large scale datasets. To this end, a proposal clus-

ering learning method which helps to cluster the proposals re-

ated to one instance together, is used in our instance localization

ipeline. 

For the convenience of following discussion, the feature map

rom a conv layer is represented as F ∈ R 

C×W ×H , where C, W and H

re the channel number, width and height of the feature map re-

pectively. The response map of the feature map is represented as

 ∈ R 

W ×H . For each layer, the response map is derived from its cor-

esponding feature map by taking average over the channel dimen-

ion, which is given by Eq. (1) . r ij and f cij in Eq. (1) are elements

n R and F , respectively. Edgeboxes procedure produces proposals

ased on the input edge response map which is represented as

 edge ∈ R 

W ×H . After further resizing the response maps to the size

f original image, the edge response map is generated by taking
verage again over these response maps. In our design, response

aps from conv1-2, conv2-1 and conv2-2 of VGG-16 are averaged

o produce the edge response map (shown in Eqn. 2 ). 

 i j = 

1 

C 

C ∑ 

c=1 

f ci j (i = 1 , . . . , W and j = 1 , . . . , H) (1)

 edge = 

1 

3 

(R conv1-2 + R conv2-1 + R conv2-2 ) (2)

The parameters of the first four conv layers are from ImageNet

re-trained model and their gradients will no longer be updated

n the later training procedure. Since the categories of training

ataset will not affect the previous four conv layers, they are more

ikely to be sensitive to unknown categories. Note that conv1-1 and

eeper layers are not chosen since they have either high response

o almost all the image regions or have response only to instance

egions of known categories. 

Considering the high computational cost on hundreds

f proposals for each image, a proposal clustering learning

PCL) [33] method is introduced to refine the generated proposals.

t consists of a basic MIL stream and two instance classifier refine-

ent streams. The whole pipeline is optimized by minimizing the

mage classification errors. For each stream, proposal clusters are

enerated according to the proposal classification scores. The cur-

ent stream provides proposal classification scores as supervisions

or the next stream. After the PCL processing, the object related

roposals are refined while the objects belonging to background

re filtered. The examples of proposals produced by our instance

ocalization pipeline are showed as Fig. 2 . As shown in the figure,

he proposed method is able to cover most of the objects in an

mage of both known and unknown categories. Since it only relies

n feature maps of shallow layers, the localization is also very

fficient. 

.3. Feature extraction 

Although the bounding boxes that are produced by the above

nstance localization pipeline cover the instances (of both known

nd unknown categories) well, the feature maps from the first
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Fig. 2. The examples of proposals obtained by our instance localization pipeline. As shown in the figure, there are many objects that are never seen in the training categories. 
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pipeline are not suitable for instance feature representation. Ac-

cording to our observation, since the features from the first

pipeline are trained to be on the semantic level, the differences be-

tween instances of the same category are largely lost. In addition,

one could not expect the bounding boxes produced from weakly

supervised method are as precise as those from fully supervised

one. As the consequence, features extracted directly from regions

detected by the first pipeline may be mixed with noises from the

background or neighboring objects. 

To address this issue, a spatial weighting network named soft

proposal network (SPN) [39] is adopted to generate object-aware

weights for instance level features separately. SPN is basically

a modification over VGG-16, in which the Soft Proposal (SP) is

plugged into the last conv layer. The SP module learns an ob-

jectness map which reflects the dissimilarity of each object region

from their surroundings by a graph propagation algorithm. There-

fore, in the objectness map, the object region will be highlighted

while the background one will be suppressed. In the forward prop-

agation, Hadamard product is performed to combine the object-

ness map with the feature map from the next conv layer. Then

in the back-propagation procedure, the gradient is apportioned by

the parameters of the objectness map. As the results, all the conv

layers of SPN are enhanced by the object-aware weights from the

objectness map. Most importantly, SPN only requires image level

annotations for training. In our design, the feature maps from SPN

are ROI pooled based on the bounding boxes produced by the first

pipeline. This finally leads to a compact feature representation of

equal size for instance from each bounding box. In the Section 4.3 ,

ablation analysis is conducted to show the layer and the combina-

tion of layers of SPN from which the features are the best suitable

for instance search. The resulting features are l 2 -normalized and

Cosine distance is adopted in the comparison. 

4. Experiments 

In this section, the performance of instance search based on the

proposed feature representation is studied on two instance search

datasets. The brief on the evaluation dataset and the experiment

setups are introduced in Section 4.1 . The ablation analysis about

our method is presented in Section 4.2 . The feature selection test

about our method is presented in Section 4.3 . The performance

comparisons to several state-of-the-art methods on two evaluation

benchmarks are presented in Section 4.4 . 
.1. Datasets and experiment setup 

The performance of the proposed method is studied on two

hallenging datasets, namely Instance-160 [29] and INSTRE [43] .

nstance-160 is derived from 160 video sequences originally used

or visual tracking evaluation. There are 160 individual instance

ueries. There are 12,045 images in the reference set. INSTRE is

uilt by collecting images of various categories. The 200 instances

ange from objects such as buildings, common objects, sculptures

o logos. There are 28,543 images in total. Following the evalua-

ion protocol in [44] , 1250 images in the dataset are treated as

ueries, and the rest are given as 27,293 reference images. For both

atasets, the bounding boxes of the query instances are provided

n advance. 

Performance is evaluated with mean Average Precision (mAP).

epresentative feature representations of both conventional and

NN-based are considered in our comparison. BoVW [11] and

oVW with Hamming embedding (BoVW+HE) [45] are based on

IFT. The considered image-level deep features are bags of lo-

al convolutional features (BLCF) [27] , BLCF with saliency weight-

ng (BLCF-SalGAN) [27] , regional of maximum activation of con-

olutions (R-MAC) [23] , cross dimensional weighting scheme

CroW) [25] and features from weighted Class Activation Map

CAM) [26] . Their features are extracted from pre-trained CNNs.

ur method is also compared to two fully-supervised methods,

oth of which produce instance-level features. They are Deepvi-

ion [24] and FCIS with deformable convolution and ResNeXt-101

FCIS+XD) [29] . Deepvision extracts instance-level features from

roposals produced by Faster-RCNN [18] . Features for FCIS+XD are

xtracted from a fully convolutional neural network [21] that is

ugmented for both instance segmentation and instance search. 

The networks in our framework are implemented by PyTorch.

ll of our experiments are pulled out on an Nvidia Titan X GPU.

ur networks are trained with image level annotations. They are

re-trained on ImageNet and fine-tuned on Microsoft COCO 2014

ataset [46] . 

.2. Configuration test 

In the first experiment, ablation analysis is conducted with

ve different runs. We mainly study the effectiveness of the in-

tance localization, the contribution of edge information to the lo-

alization and the impact of weight assignment on our instance
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Table 1 

Performance evaluation of different enhancement schemes in our method on 

Instance-160 and INSTRE, the feature dimension is fixed to 512 . 

Dataset Method Top-10 Top-20 Top-50 Top-100 All 

Instance-160 SPN 0.142 0.223 0.340 0.380 0.422 

PCL 0.167 0.271 0.412 0.460 0.509 

PCL ∗ 0.169 0.276 0.429 0.485 0.539 

PCL + SPN 0.183 0.303 0.474 0.537 0.596 

PCL ∗+ SPN 0.177 0.297 0.476 0.541 0.603 

INSTRE SPN – – – – 0.077 

PCL – – – – 0.243 

PCL ∗ – – – – 0.328 

PCL + SPN – – – – 0.256 

PCL ∗+ SPN – – – – 0.415 
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Table 2 

Performance comparison on Instance-160. 

Method Dim. Top-10 Top-20 Top-50 Top-100 All 

BoVW [11] 65,536 0.106 0.165 0.248 0.281 0.314 

BoVW + HE [45] 65,536 0.148 0.236 0.355 0.403 0.438 

BLCF [27] 336 0.046 0.076 0.126 0.167 0.227 

BLCF-SalGAN [27] 336 0.063 0.105 0.175 0.214 0.278 

R-MAC [23] 512 0.101 0.164 0.268 0.307 0.358 

CroW [25] 512 0.073 0.130 0.239 0.284 0.338 

Deepvision [24] 512 0.194 0.328 0.541 0.666 0.731 

FCIS + XD [29] 1536 0.211 0.356 0.575 0.659 0.724 

Ours 1024 0.211 0.358 0.578 0.660 0.722 

Table 3 

Performance comparison on 40 queries of Instance-160 where heavy background 

changes are in present. 

Method Dim. Top-10 Top-20 Top-50 Top-100 All 

Deepvision [24] 512 0.193 0.298 0.464 0.559 0.589 

FCIS + XD [29] 1536 0.262 0.430 0.647 0.698 0.737 

Ours 1024 0.239 0.363 0.517 0.569 0.610 
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earch task. The features produced by the spatial weighting net-

ork named SPN are treated as the comparison baseline. These

PN features are produced by ROI pooling with the proposals pro-

uced by SPN itself. Features extracted from proposals produced

y original PCL and the one from enhanced PCL (given as PCL ∗)

re also studied. In addition, the features from SPN feature maps

hile being ROI pooled with proposals produced by PCL are stud-

ed, which is given as “PCL+SPN”. Our features are ROI pooled from

he weighted feature maps from SPN with the proposals produced

y PCL ∗, which is given as “PCL ∗+SPN”. Features for above five con-

gurations are extracted from the conv5-3 layer of VGG-16. The

CA whitening is not adopted in any of the above configurations. 

The evaluation is in line with the protocol of each benchmark.

ollowing [29] , the performance on Instance-160 is measured by

AP at top- k , where k varies from 10 to 100 . As shown on Table 1 ,

CL+SPN outperforms SPN by 0.174 and 0.179 on Instance-160 and

NSTRE respectively. This basically indicates the instance localiza-

ion plays an important role for feature representation. Further-

ore, considerable improvement is observed from PCL ∗ over PCL.

imilar trend is observed when comparing PCL ∗+SPN to PCL+SPN.

his confirms our choice of shallow conv layers as the input to

dgeBoxes for bounding box estimation. It also shows the ability of

iscovering unknown category is critical to boost the search perfor-

ance. The superiorities of PCL+SPN over PCL and PCL ∗+SPN over

CL ∗ demonstrate the weight assignment on the feature maps is

elpful. Due to the superior performance, features from PCL ∗+SPN
ig. 3. Performances of deep features extracted from different conv layers and different f

he (b) shows the performance on INSTRE. The previous 13 bars represent single-layer fea

onv layer in second conv group of VGG-16 with the feature dimension is 128 . sp1 and sp
re adopted as the standard configuration for our method in the

est of our experiments. 

.3. Feature selection 

Theoretically speaking, the feature maps from each conv layer

ould be used to derive the instance level features under our

ramework. However, as witnessed by many studies, the perfor-

ance varies considerably for the features derived from different

ayers. In this ablation analysis, we study the performance of fea-

ures derived from different conv layers. Such that we try to seek

he best representation for the detected instances. Namely, features

erived from conv2-1 to conv5-3 layers of VGG-16 and two layers

f SP module are tested. The experiment results on Instance-160

nd INSTRE are shown in Fig. 3 . 

As seen from the figure, features from intermediate layers

how relatively good performance, which shares similar ob-

ervation as [29] . In order to enhance the performance, the

ombinations of features from different layers are also tried. The

ingle-layer features we select to concatenate is based on the

onsideration of both their distinctiveness and dimensionalities.
eature concatenation ways, where the (a) shows the performance on Instance-160, 

tures and the later 2 bars represent multi-layer features. C2_1, 128 donates the first 

2 donate the two layers in SP module. 
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Fig. 4. Top-10 results of four sample queries from INSTRE and Instance-160. The first two rows are from INSTRE, the third and fourth rows are from Instance-160. Images of 

the first column are the queries. The rest images in one row are the returned results (ranked from left to right). The detected bounding boxes are also shown. 

Table 4 

Performance comparison on INSTRE. 

Method Off-the-shelf Dim. All 

Deepvision [24] No. 512 0.197 

FCIS + XD [29] No. 1536 0.067 

CroW [25] Yes 512 0.416 

CAM [26] Yes 512 0.325 

R-MAC [23] Yes 512 0.523 

BLCF [27] Yes 336 0.636 

BLCF-SalGAN [27] Yes 336 0.698 

Ours No. 1024 0.575 
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2 Features are extracted from whole image for both query and reference images. 
According to the results on the two benchmarks, we find the

best combination comes from conv5-1 and conv5-2 . Moreover,

according to our off-the-shelf test, concatenating features from

more layers is not helpful or the improvement is minor. Therefore

our feature is produced from the combination of features from

conv5-1 and conv5-2 in the rest of experiments. 

4.4. Comparison to state-of-the-arts 

In this section, the performance of our method is studied in

comparison to several representative works such as BoVW [11] ,

BoVW+HE [45] , R-MAC [23] , BLCF [27] , CAM [26] , CroW [25] , Deep-

vision [24] and FCIS+XD [29] . The evaluation is conducted on

Instance-160 and INSTRE. The evaluation is in line with the pro-

tocol of each benchmark. Following several other works [24,27] ,

features extracted from our method are l 2 -normalized, followed by

PCA whitening and a second round of l 2 -normalization. For those

methods that cannot return bounding boxes, their mAPs are mea-

sured on image level. 

The performance on Instance-160 is shown on Table 2 . As seen

from the table, Deepvision, FCIS+XD and our method show rela-

tively superior performance. Among them, FCIS+XD demonstrates

similar performance trend as ours. In contrast, conventional hand-

crafted features (e.g., BoVW and BoVW+HE) and global deep fea-

tures (e.g., BLCF, R-MAC and Crow) show considerably lower perfor-

mance. Even though FCIS+XD and Deepvision are competitive with

ours, the training conditions for them are demanding. While our

method only requires image-level class labels for the training set. 

Another disadvantage of Deepvision is that it still relies on

global deep feature. It actually undertakes two-stage search. On the
rst stage, the deep global features 2 are adopted to search over the

ntire image set. On the second round, the features from query in-

tance are compared to the instance level features from top-ranked

andidates of the first stage search. As a result, instances with con-

iderable background variations may be missed on the first stage

earch. 

Another experiment on a subset of Instance-160 confirms our

bservation. In this subset, instances whose backgrounds are un-

er severe variations are selected. On this subset, it is easy to see

he advantage of instance level representation over those features

erived from the whole image. As shown on Table 3 , the perfor-

ance of Deepvison drops a lot compared to previous result on the

ntire Instance-160 dataset. This basically indicates that instance-

evel features show better distinctiveness over global features. Al-

hough FCIS+XD achieves the best performance on this dataset, the

raining conditions are too demanding to be undertaken for large-

cale tasks. Compared to existing solutions, our method achieves a

ood trade-off between the performance and the training cost. 

The performance on INSTRE is shown on Table 4 . Our method is

nly next to BLCF and BLCF-SalGAN. Notice that these two meth-

ds produce features on image level and are unable to localize in-

tances from the retrieved images. Both Deepvision and FCIS+XD

how considerable performance degradation on INSTRE, in con-

rast to their high performance on Instance-160. The performance

egradation is mainly due to their insensitivity to unknown cate-

ories. On the contrary, BLCF, BLCF-SalGAN and R-MAC show com-

etitive performance on INSTRE while poor performance is ob-

erved on Instance-160. This basically indicates that their feature

epresentations are not robust to the scenarios where instances are

mbedded in the complex background. Overall, our method shows

table performance across two challenging evaluation benchmarks.

n the one hand, it shows that our method is capable of iden-

ifying unknown categories. On the other hand, it also indicates

ur feature representation remains distinctive despite of the severe

ariations in instance appearance or the interference from complex

ackgrounds. 

Fig. 4 further shows search samples from our method. Interest-

ngly, we find that our method has the ability to identify unknown

ategories. For instance, STARBUCK logo and the cartoon character

Spongebob”, which are not in our training categories have been

uccessfully identified. In addition, the feature description is suf-
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ciently robust that gets the query instance well-matched to the

andidate instances even under severe geometric variations. Our

ethod also shows encouraging performance on non-rigid objects

s demonstrated on the last two rows. 

. Conclusion 

In this paper, a feature representation scheme that is designed

or instance search has been presented. Different from many exist-

ng instance search schemes, the feature is built genuinely on in-

tance level and object-aware weights are assigned on the regions

f the objects residing in. This leads to the distinctive feature rep-

esentation as well as precise instance localization. Moreover, this

eature is trained based on a weakly supervised object detection

etwork, which only requires image level annotations and is less

eliant on known category labels. It therefore turns out to be sen-

itive to latent instances of known and unknown categories in an

mage. Stable and superior performance has been observed on two

hallenging evaluation benchmarks. 

eclaration of Competing Interest 

The authors declare that they have no known competing finan-

ial interests or personal relationships that could have appeared to

nfluence the work reported in this paper. 

cknowledgments 

This work is supported by National Natural Science Foundation

f China under grants 61572408 and grants of Xiamen University

630-ZK1083 . 

eferences 

[1] W.-L. Zhao , H. Jegou , G. Guillaume , Sim-min-hash: an efficient matching tech-

nique for linking large image collections, in: Proceedings of the ACM Interna-
tional Conference on Multimedia, ACM, 2013, pp. 577–580 . 

[2] A. Gordo , J. Almazan , J. Revaud , D. Larlus , End-to-end learning of deep visual
representations for image retrieval, Int. J. Comput. Vis. 124 (2) (2017) 237–254 .

[3] A. Babenko , V. Lempitsky , Aggregating local deep features for image retrieval,
in: Proceedings of the IEEE International Conference on Computer Vision, 2015,

pp. 1269–1277 . 

[4] M. Tzelepi , A. Tefas , Deep convolutional learning for content based image re-
trieval, Neurocomputing 275 (2018) 2467–2478 . 

[5] C. Bai , L. Huang , X. Pan , J. Zheng , S. Chen , Optimization of deep convolutional
neural network for large scale image retrieval, Neurocomputing 303 (2018)

60–67 . 
[6] Y. Li , X. Kong , H. Fu , Q. Tian , Aggregating hierarchical binary activations for

image retrieval, Neurocomputing 314 (2018) 65–77 . 

[7] Y. Li , Z. Miao , J. Wang , Y. Zhang , Nonlinear embedding neural codes for visual
instance retrieval, Neurocomputing 275 (2018) 1275–1281 . 

[8] D.G. Lowe , Distinctive image features from scale-invariant keypoints, Int. J.
Comput. Vis. 60 (2) (2004) 91–110 . 

[9] H. Bay , T. Tuytelaars , L. Van Gool , SURF: Speeded up robust features, in: Pro-
ceedings of the European Conference on Computer Vision, Springer, 2006,

pp. 404–417 . 

[10] S.S.C.-Z. Zhu , H. J ̧E gou , NII team: query-adaptive asymmetrical dissimilarities
for instance search, in: Proceedings of the TRECVID 2013 workshop, Gaithers-

burg, USA, 2013, pp. 1705–1712 . 
[11] J. Sivic , A. Zisserman , Video google: a text retrieval approach to object match-

ing in videos, in: Proceedings of the IEEE International Conference on Com-
puter Vision, 2003, pp. 1470–1477 . 

[12] H. Jégou , M. Douze , C. Schmid , P. Pérez , Aggregating local descriptors into

a compact image representation, in: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2010, pp. 3304–3311 . 

[13] F. Perronnin , J. Sánchez , T. Mensink , Improving the fisher kernel for large-scale
image classification, in: Proceedings of the European Conference on Computer

Vision, 2010, pp. 143–156 . 
[14] A. Krizhevsky , I. Sutskever , G.E. Hinton , Imagenet classification with deep con-

volutional neural networks, in: Proceedings of the Advances in Neural Infor-
mation Processing Systems, 2012, pp. 1097–1105 . 

[15] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale

image recognition, arXiv: 1409.1556 (2014). 
[16] S. Yu , S. Jia , C. Xu , Convolutional neural networks for hyperspectral image clas-

sification, Neurocomputing 219 (2017) 88–98 . 
[17] R. Girshick , Fast R-CNN, in: Proceedings of the IEEE International Conference

on Computer Vision, 2015, pp. 1440–1448 . 
[18] S. Ren , K. He , R. Girshick , J. Sun , Faster R-CNN: towards real-time object detec-
tion with region proposal networks, in: Proceedings of the Advances in Neural

Information Processing Systems, 2015, pp. 91–99 . 
[19] T. Zhang , L.-Y. Hao , G. Guo , A feature enriching object detection framework

with weak segmentation loss, Neurocomputing 335 (2019) 72–80 . 
20] K. He , G. Gkioxari , P. Dollár , R. Girshick , Mask R-CNN, in: Proceedings

of the IEEE International Conference on Computer Vision, 2017, pp. 2961–
2969 . 

[21] Y. Li , H. Qi , J. Dai , X. Ji , Y. Wei , Fully convolutional instance-aware semantic

segmentation, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2017, pp. 2359–2367 . 

22] A.S. Razavian , J. Sullivan , S. Carlsson , A. Maki , Visual instance retrieval with
deep convolutional networks, ITE Trans. Media Technol. Appl. 4 (3) (2016)

251–258 . 
23] G. Tolias, R. Sicre, H. Jégou, Particular object retrieval with integral max-

pooling of CNN activations, arXiv: 1511.05879 (2015). 

[24] A. Salvador , X. Giró-i Nieto , F. Marqués , S. Satoh , Faster R-CNN features for
instance search, in: Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition Workshops, 2016, pp. 9–16 . 
25] Y. Kalantidis , C. Mellina , S. Osindero , Cross-dimensional weighting for aggre-

gated deep convolutional features, in: Proceedings of the European Conference
on Computer Vision, Springer, 2016, pp. 685–701 . 

26] A. Jimenez, J.M. Alvarez, X. Giro-i Nieto, Class-weighted convolutional features

for visual instance search, arXiv: 1707.02581 (2017). 
[27] E. Mohedano , K. McGuinness , X. Giró-i Nieto , N.E. O’Connor , Saliency weighted

convolutional features for instance search, in: Proceedings of the International
Conference on Content-Based Multimedia Indexing (CBMI), IEEE, 2018, pp. 1–6 .

28] B. Zhou , A. Khosla , A. Lapedriza , A. Oliva , A. Torralba , Learning deep features
for discriminative localization, in: Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2016, pp. 2921–2929 . 

29] Y. Zhan, W.-L. Zhao, Instance search via instance level segmentation and fea-
ture representation, arXiv: 1806.03576 (2018). 

30] W. Ren , K. Huang , D. Tao , T. Tan , Weakly supervised large scale object local-
ization with multiple instance learning and bag splitting, IEEE Trans. Pattern

Anal. Mach. Intell. 38 (2) (2015) 405–416 . 
[31] R.G. Cinbis , J. Verbeek , C. Schmid , Weakly supervised object localization with

multi-fold multiple instance learning, IEEE Trans. Pattern Anal. Mach. Intell. 39

(1) (2016) 189–203 . 
32] H. Bilen , A. Vedaldi , Weakly supervised deep detection networks, in: Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016,
pp. 2846–2854 . 

[33] P. Tang , X. Wang , S. Bai , W. Shen , X. Bai , W. Liu , A.L. Yuille , PCL: proposal clus-
ter learning for weakly supervised object detection, IEEE Trans. Pattern Anal.

Mach. Intell. (2018) . 

34] R. Girshick , J. Donahue , T. Darrell , J. Malik , Rich feature hierarchies for ac-
curate object detection and semantic segmentation, in: Proceedings of the

IEEE conference on computer vision and pattern recognition, 2014, pp. 580–
587 . 

[35] J. Redmon , S. Divvala , R. Girshick , A. Farhadi , You only look once: Unified, re-
al-time object detection, in: Proceedings of the IEEE conference on computer

vision and pattern recognition, 2016, pp. 779–788 . 
36] W. Liu , D. Anguelov , D. Erhan , C. Szegedy , S. Reed , C.-Y. Fu , A.C. Berg , SSD:

Single shot multibox detector, in: Proceedings of the European conference on

computer vision, Springer, 2016, pp. 21–37 . 
[37] O. Maron , T. Lozano-Pérez , A framework for multiple-instance learning, in:

Proceedings of the Advances in Neural Information Processing Systems, 1998,
pp. 570–576 . 

38] X. Zhang , Y. Wei , J. Feng , Y. Yang , T.S. Huang , Adversarial complementary
learning for weakly supervised object localization, in: Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, 2018, pp. 1325–

1334 . 
39] Y. Zhu , Y. Zhou , Q. Ye , Q. Qiu , J. Jiao , Soft proposal networks for weakly super-

vised object localization, in: Proceedings of the IEEE International Conference
on Computer Vision, 2017, pp. 1841–1850 . 

40] M. Shi , V. Ferrari , Weakly supervised object localization using size esti-
mates, in: Proceedings of the European Conference on Computer Vision, 2016,

pp. 105–121 . 

[41] J.R. Uijlings , K.E. Van De Sande , T. Gevers , A.W. Smeulders , Selective search for
object recognition, Int. J. Comput. Vis. 104 (2) (2013) 154–171 . 

42] C.L. Zitnick , P. Dollár , Edge boxes: locating object proposals from edges, in:
Proceedings of the European Conference on Computer Vision, Springer, 2014,

pp. 391–405 . 
43] S. Wang , S. Jiang , INSTRE: a new benchmark for instance-level object retrieval

and recognition, ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 11

(3) (2015) 37 . 
44] A. Iscen , G. Tolias , Y. Avrithis , T. Furon , O. Chum , Efficient diffusion on re-

gion manifolds: recovering small objects with compact CNN representations,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition, 2017, pp. 2077–2086 . 
45] H. Jegou , M. Douze , C. Schmid , Hamming embedding and weak geometric con-

sistency for large scale image search, in: Proceedings of the European Confer-

ence on Computer Vision, 2008, pp. 304–317 . 
46] T.-Y. Lin , M. Maire , S. Belongie , J. Hays , P. Perona , D. Ramanan , P. Dollár , C.L. Zit-

nick , Microsoft COCO: common objects in context, in: Proceedings of the Eu-
ropean Conference on Computer Vision, Springer, 2014, pp. 740–755 . 

https://doi.org/10.13039/501100001809
https://doi.org/10.13039/501100008865
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0001
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0002
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0003
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0004
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0005
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0006
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0007
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0008
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0009
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0010
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0011
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0012
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0013
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0014
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0014
http://arXiv:1409.1556
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0015
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0016
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0017
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0018
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0019
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0020
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0021
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0021
http://arXiv:1511.05879
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0022
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0023
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0023
http://arXiv:1707.02581
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0024
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0025
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0025
http://arXiv:1806.03576
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0026
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0027
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0028
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0029
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0030
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0031
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0032
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0033
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0034
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0035
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0036
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0037
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0038
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0039
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0040
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0041
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042
http://refhub.elsevier.com/S0925-2312(19)31626-1/sbref0042


124 J. Lin, Y. Zhan and W.-L. Zhao / Neurocomputing 424 (2021) 117–124 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Jie Lin received her Bachelor degree of Computer Science

from Fuzhou University, China in 2017. She is currently
a graduate student at Department of Computer Science,

Xiamen University. Her research interest is content-based

image retrieval and instance search. 

Yu Zhan received his Master degree of Computer Science
from Xiamen University, China in 2019. He is currently

an Algorithm Engineer in Aibee Group. His research inter-

est is visual object detection, image retrieval and machine
learning. 
Wan-Lei Zhao received his Ph.D degree from City Uni-

versity of Hong Kong in 2010. He received M.Eng. and
B.Eng. degrees in Department of Computer Science and

Engineering from Yunnan University in 2006 and 2002 re-

spectively. He currently works with Xiamen University as
an associate professor, China. Before joining Xiamen Uni-

versity, he was a Postdoctoral Scholar in INRIA, France.
His research interests include multimedia information re-

trieval and video processing. 


	Instance search based on weakly supervised feature learning
	1 Introduction
	2 Related work
	3 The proposed method
	3.1 Overall framework
	3.2 Instance localization
	3.3 Feature extraction

	4 Experiments
	4.1 Datasets and experiment setup
	4.2 Configuration test
	4.3 Feature selection
	4.4 Comparison to state-of-the-arts

	5 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	References


