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a b s t r a c t 

Due to its simplicity and versatility, k -means remains popular since it was proposed three decades ago. 

The performance of k -means has been enhanced from different perspectives over the years. Unfortunately, 

a good trade-off between quality and efficiency is hardly reached. In this paper, a novel k -means variant 

is presented. Different from most of k -means variants, the clustering procedure is driven by an explicit 

objective function, which is feasible for the whole l 2 -space. The classic egg-chicken loop in k -means has 

been simplified to a pure stochastic optimization procedure. The procedure of k -means becomes simpler 

and converges to a considerably better local optima. The effectiveness of this new variant has been stud- 

ied extensively in different contexts, such as document clustering, nearest neighbor search and image 

clustering. Superior performance is observed across different scenarios. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Clustering problems arise from variety of applications, such as

ocuments/web pages clustering [1] , pattern recognition, image

inking [2] , image segmentation [3] , data compression via vector

uantization [4] and nearest neighbor search [5–7] . In the last

hree decades, various clustering algorithms have been proposed.

mong these algorithms, k -means [8] remains a popular choice

or its simplicity, efficiency and moderate but stable performance

cross different problems. It was known as one of top ten most

opular algorithms in data mining [9] . On one hand, k -means has

een widely adopted in different applications. On the other hand,

ontinuous effort s have been devoted to enhance the performance

 -means as well. 

Despite its popularity, it actually suffers from several latent is-

ues. Although the time complexity is linear to data size, tradi-

ional k -means is still not sufficiently efficient to handle the web-

cale data. In some specific scenarios, the running time of k -means

ould be even exponential in the worst case [10,11] . Moreover, k -

eans usually only converges to local optima. As a consequence,

ecent research has been working on either improving its cluster-

ng quality [12,13] or efficiency [2,13–19] . k -means has been also

ailored to perform web-scale image clustering [2,20] . 
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There are in general three steps involved in the clustering

rocedure. Namely, 1. initialize k cluster centroids; 2. assign each

ample to its closest centroid; 3. recompute cluster centroids

ith assignments produced in Step 2 and go back to Step 2 until

onvergence. This is known as Lloyd iteration procedure [8] . The it-

ration repeats Step 2 and Step 3 until the centroids do not change

etween two consecutive rounds. Given C 1 ���k ∈ R d are cluster cen-

roids, { x i ∈ R d } i =1 ... n are samples to be clustered, above procedure

ssentially minimizes the following objective function: 

in 

∑ 

q (x i )= r 
‖ C r − x i ‖ 

2 . (1) 

n Eq. (1) , function q ( · ) returns the closest centroid for sample

 i . Unfortunately, searching an optimal solution for the above

bjective function is NP-hard. In general k -means only converges

o local minimum [21] . The reason that k -means maintains its

opularity is mainly due to its linear complexity in terms of the

umber of samples to be clustered. The complexity is O ( t · k · n · d ),

iven t as the number of iterations to converge. Compared with

ther well-known clustering algorithms such as DBSCAN [22] ,

ean shift [23] and clusterDP [24] , this complexity is considerably

ow. However, the efficiency of traditional k -means cannot cope

ith the massive growth of data in Internet. In particular, in the

ase that the size of data ( n ), the number of clusters ( k ) and the di-

ension ( d ) are all very large, k -means becomes unbearably slow.

he existing effort s [16,18] in enhancing the scalability of k -means

or web-scale tasks often come with price of lower clustering

uality. On the other hand, k -means++ proposed in [12,17] focuses

n enhancing the clustering quality by a careful design of the
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initialization procedure. However, k -means slows down as a few

rounds of scanning over the dataset is still necessary in the

initialization. 

In this paper, a novel variant of k -means is proposed, which

aims to make a better trade-off between clustering quality and ef-

ficiency. Inspired by the work in [1] , a novel objective function is

derived from Eq. (1) . With the development of this objective func-

tion, the traditional k -means iteration procedure has been revised

to a simpler form, in which the costly initial assignment becomes

unnecessary. In addition, driven by the objective function, sam-

ple is moved from one cluster to another cluster when we find

this movement leads to higher objective function score, which is

known as incremental clustering [1,25] . These modifications lead

to several advantages. 

• k -means clustering without initial assignment results in better

quality as well as higher speed efficiency. 

• k -means iteration driven by an explicit objective function con-

verges to considerably lower clustering distortion in faster pace.

• Different from traditional k -means, it is not necessary to assign

a sample to its closest centroid in each iteration, which also

leads to higher speed. 

In addition, when clustering undertaken in hierarchical bisect-

ing fashion, the proposed method achieves the highest scalability

among all top-down hierarchical clustering methods. Extensive ex-

periments are conducted to contrast the performance of proposed

method with k -means and its variants including tasks document

clustering [1] , nearest neighbor search (NNS) with product quanti-

zation [4] and image clustering. 

The remainder of this paper is organized as follows. The re-

views about representative works on improving the performance

of traditional k -means are presented in Section 2 . In Section 3 ,

the clustering objective functions are derived based on Eq. (1) .

Based on the objective function, Section 4 presents the cluster-

ing method. Extensive experiment studies over proposed clustering

method are presented in Section 5 . Section 6 concludes the paper. 

2. Related works 

Clustering is a process of partitioning a set of samples into a

number of groups without any supervised training. Due to its ver-

satility in different contexts, it has been studied in the last three

decades [26] . As the introduction of Web 2.0, millions of data in In-

ternet has been generated on a daily basis. Clustering becomes one

of the basic tools to process such big volume of data. As a conse-

quence, traditional clustering methods have been shed with new

light. People are searching for clustering methods that are scalable

[16–18,27] to web-scale data. In general, boosting the performance

of traditional k -means becomes the major trend due to its simplic-

ity and relative higher efficiency over other clustering methods. 

In general, there are two major ways to enhance the perfor-

mance of k -means. For the first kind, the aim is to improve the

clustering quality. One of the important work comes from Bah-

mani et al. [12,17] . The motivation is based on the observation that

k -means converges to a better local optima if the initial cluster

centroids are carefully selected. According to [12] , k -means itera-

tion also converges faster due to the careful selection on the initial

cluster centroids. However, in order to adapt the initial centroids to

the data distribution, k rounds of scanning over the data are nec-

essary. Although the number of scanning rounds has been reduced

to a few in [17] , the extra computational cost is still inevitable. 

In each k -means iteration, the processing bottleneck is the op-

eration of assigning each sample to its closest centroid. The itera-

tion becomes unbearably slow when both the size and the dimen-

sion of the data are very large. Considering that this is a nearest

neighbor search problem, Kanungo et al. [14] proposed to index
ataset in a KD Tree [28] to speed-up the sample-to-centroid near-

st neighbor search. However, this is only feasible when the di-

ension of data is in few tens. Similar scheme has been adopted

y Pelleg and Moore [29] . Unfortunately, due to the curse of di-

ensionality, this method becomes ineffective when the dimen-

ion of data grows to a few hundreds. A recent work [18] takes

imilar way to speed-up the nearest neighbor search by indexing

ataset with inverted file structure. During the iteration, each cen-

roid is queried against all the indexed data. Thanks to the effi-

iency of inverted file structure, one to two orders of magnitude

peed-up is observed. However, inverted file indexing structure is

nly effective for sparse vectors. 

Alternatively, the scalability issue of k -means is addressed by

ubsampling over the dataset during k -means iteration. Namely,

ethods in [16,30] only pick a small portion of the whole dataset

o update the cluster centroids each time. For the sake of speed ef-

ciency, the number of iterations is empirically set to small value.

t is therefore possible that the clustering terminates without a sin-

le pass over the whole dataset, which leads to higher speed but

lso higher clustering distortion. Even though, when coping with

igh dimensional data in big size, the speed-up achieved by these

ethods is still limited. 

Apart from above methods, there is another easy way to re-

uce the number of comparisons between the samples and cen-

roids, namely performing clustering in a top-down hierarchical

anner [1,31,32] . Specifically, the clustering solution is obtained

ia a sequence of repeated bisections. The clustering complexity

f k -means is reduced from O ( t · k · n · d ) to O ( t · log ( k ) · n · d ). This

s particularly significant when n, d and k are all very large. In

ddition to that, another interesting idea from [1,32] is that clus-

er centroids are updated incrementally [1,25] . Moreover, the up-

ate process is explicitly driven by an objective function (called

s criterion function in [1,32] ). Unfortunately, objective functions

roposed in [1,31,32] are based on the assumption that input data

re in unit length. The clustering method is solely based on Cosine

istance, which makes the clustering results unpredictable when

ealing with data in the general l 2 -space. 

In this paper, a new objective function is derived directly from

q. (1) , which makes it suitable for the whole l 2 -space. In other

ord, objective function proposed in [1] is the special case of our

roposed form. Based on the proposed objective function, conven-

ional egg-chicken k -means iteration is revised to a simpler form.

n one hand, when applying the revised iteration procedure in

irect k -way clustering, k -means is able to reach to considerably

ower clustering distortion within only a few rounds. On the other

and, as the iteration procedure is undertaken in top-down hier-

rchical clustering manner (specifically bisecting), it shows faster

peed while maintaining relatively lower clustering distortion in

omparison to traditional k -means and most of its variants. 

. Clustering objective functions 

In this section, the clustering objective functions upon which

ur k -means method is built are presented. Basically, two objective

unctions that aim to optimize the clustering results from different

spects are derived. Furthermore, we also show that these two ob-

ective functions can be reduced to a single form. 

.1. Preliminaries 

In order to facilitate the discussions that are followed, several

ariables are defined. Throughout the paper, the size of input data

s given as n , while the number of clusters to be produced is given

s k . The partition formed by a clustering method is represented

s { S 1 , . . . , S r . . . , S k } . Accordingly, the sizes of clusters are given as

 , . . . , n r , . . . , n . The composite vector of a cluster is defined as
1 k 
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 r = 

∑ 

x i ∈ S r x i . The cluster centroid C r 
1 is defined by its members,

 r = 

∑ n r 
i =1 x i 

n r 
= 

D r 

n r 
(2) 

he inner-product of C r is given by C ′ r C r = 

( 
∑ n r 

i =1 
x i ) 

′ ( ∑ n r 
i =1 

x i ) 

n 2 r 
, which

s expanded as following form. 

 

′ 
r C r = 

1 

n 

2 
r 

[(x ′ 1 x 1 + · · · + x ′ 1 x i + · · · + x ′ 1 x n r ) 

+(x ′ 2 x 1 + · · · + x ′ 2 x i + · · · + x ′ 2 x n r ) 
+ · · ·
(x ′ i x 1 + · · · + x ′ i x i + · · · + x ′ i x n r ) 
+ · · ·
(x ′ n r x 1 + · · · + x ′ n x i + · · · + x ′ n r x n r )] 

= 

1 

n 

2 
r 

( 

n r ∑ 

i =1 

x 2 i + 2 

n r ∑ 

i, j=1& i< j 

< x i , x j > 

) 

Re-arrange the above equation, we have 

n r ∑ 

, j=1& i< j 

< x i , x j > = 

1 

2 

( 

n r 
2 ·C ′ r C r −

n r ∑ 

i =1 

x 2 i 

) 

. (3)

he sum of pairwise l 2 -distance within one cluster is given as 

 = (n r − 1) 
n r ∑ 

i =1 

x 2 i − 2 ·
n r ∑ 

i, j=1& i< j 

< x i , x j >. (4)

Plug Eq. (3) into Eq. (4) , we have 

 = ( n r − 1) 
n r ∑ 

i =1 

x 2 i −
( 

n r 
2 ·C ′ r C r −

n r ∑ 

i =1 

x 2 i 

) 

= ( n r − 1) 
n r ∑ 

i =1 

x 2 i − n r 
2 ·C ′ r C r + 

n r ∑ 

i =1 

x 2 i 

= n r 

n r ∑ 

i =1 

x 2 i − n r 
2 ·C ′ r C r . (5) 

q. (5) is rewritten as 

 = n r 

n r ∑ 

i =1 

x 2 i − D 

′ 
r D r . (6)

.2. Objective functions 

In this section, two objective functions (also known as criterion

unctions [1] ) are developed. In addition, with the support of the

esults obtained in Section 3.1 , these objective functions will be

educed to simple forms, which enable them to be carried out ef-

ciently in the incremental optimization procedure. 

According to [1] , objective functions are categorized into two

roups. One group of the functions consider the tightness of clus-

ers, while another focuses on alienating different clusters. In this

aper, the focus is on producing a clustering solution defined over

he elements within each cluster. It therefore does not consider the

elationship between the elements assigned to different clusters. 

The first objective function we consider is to minimize the dis-

ance of each element to its cluster centroid, which is nothing
1 We refer to as column vector across the paper. 

c  

o  

f  
ore than the objective function of k -means. 

Min. I 1 = 

∑ 

q (x i )= r 
‖ C r − x i ‖ 

2 

= 

k ∑ 

r=1 

∑ 

x i ∈ S r 
d(x i , C r ) . 

(7) 

he above equation is simplified as 

in. I 1 = 

k ∑ 

r=1 

( 

n r ∑ 

i =1 

x ′ i x i + n r C 
′ 
r C r − 2 

n r ∑ 

i =1 

x ′ i C r 

) 

= 

k ∑ 

r=1 

( 

n r ∑ 

i =1 

x ′ i x i + 

D 

′ 
r D r 

n r 
− 2 

D 

′ 
r D r 

n r 

) 

= 

k ∑ 

r=1 

( 

n r ∑ 

i =1 

x ′ i x i −
D 

′ 
r D r 

n r 

) 

= 

k ∑ 

r=1 

n r ∑ 

i =1 

x ′ i x i −
k ∑ 

r=1 

D 

′ 
r D r 

n r 

= E −
k ∑ 

r=1 

D 

′ 
r D r 

n r 
(8) 

ince the input data are fixed, E is a constant. As a result, minimiz-

ng Eq. (8) is equivalent to maximizing following function 

ax. I ∗1 = 

k ∑ 

r=1 

D 

′ 
r D r 

n r 
. (9) 

lthough objective function in Eq. (9) is in the same form as the

rst objective function in [1] , they are derived from different ini-

ial objectives. More importantly, in our case, there is no constraint

hat input data should be in unit length. 

The second internal objective function that we will study min-

mizes the sum of the average pairwise distance between the ele-

ents assigned to each cluster, weighted according to the size of

ach cluster. 

in. I 2 = 

k ∑ 

r=1 

n r 

( 

2 

n r ·(n r − 1) 

∑ 

d i ,d j ∈ S r & i> j 

d(x i , x j ) 

) 

(10) 

Plug Eq. (6) in, we have 

in. I 2 = 

k ∑ 

r=1 

n r 

( 

2 

n r ·(n r − 1) 

( 

n r 

n r ∑ 

i =1 

x ′ i x i − D 

′ 
r D r 

) ) 

= 

k ∑ 

r=1 

2 n r 

n r − 1 

n r ∑ 

i =1 

x ′ i x i − 2 

k ∑ 

r=1 

D 

′ 
r D r 

n r − 1 

(11) 

In Eq. (11) , n r 
n r −1 is close to 1 , the above objective function is

pproximated as 

in. I 2 ≈ 2 E − 2 

k ∑ 

r=1 

D 

′ 
r D r 

n r 
. (12)

imilar as Eq. (8) , since the input data are fixed, E is a constant. As

s result, minimizing Eq. (12) is equivalent to maximizing function

ax. I ∗2 ≈
k ∑ 

r=1 

D 

′ 
r D r 

n r 
. (13) 

Noticed that similar optimization objectives have been dis-

ussed under Cosine similarity measure in [1] . In the paper, two

bjective functions are reduced into different forms. This is dif-

erent from the result obtained in our case (general l -space). As
2 
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Algorithm 1 Direct k -way k -means # . 

1: Input : matrix X n ×d 

2: Output : S 1 , · · ·, S r , · · ·S k 
3: Assign x i ∈ X with a random cluster label; 

4: Calculate D 1 , · · ·, D r , · · ·D k and I ∗
1 

; 

5: while not convergence do 

6: for each x i ∈ X (in random order) do 

7: Seek S v that maximizes �I ∗
1 
(x i ) ; 

8: if �I ∗1 (x i ) > 0 then 

9: Move x i from current cluster to S v ; 

10: end if 

11: end for 

12: end while 
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shown above, in l 2 -space, the objective functions for I ∗1 and I ∗2 are

approximately the same. The advantage that two objective func-

tions are reduced to the same form is that, when we try to op-

timize one objective function, we optimize another in the mean

time. Specifically, when we minimize the distances from elements

to their cluster centroid, the average intra-cluster distance is mini-

mized in the meantime. Since these two objective functions can be

simplified to the same form, only objective function I ∗1 is discussed

in the rest of paper. 

Although objective function in Eq. (9) is derived from Eq. (1) ,

the former is much easier to operate in the incremental k -means

procedure. As it will be shown in the next section, it is quite con-

venient to evaluate whether Eq. (9) attains a higher score (implies

lower distortion in terms of Eq. (1) ) when a sample x i is moved

from one cluster to another. 

4. k -means driven by objective function 

In this section, with the objective function developed in

Section 3 , two iterative clustering procedures are presented.

Namely, one produces k clusters directly (called as direct k -way k -

means), while another produces k clusters by bisecting input data

sequentially k-1 times (called as bisecting k -means). Both clus-

tering strategies are built upon incremental clustering [1,25] and

driven by objective function I ∗1 ( Eq. (9) ). 

4.1. Clustering algorithm 

The basic idea of incremental clustering is that one sample x i 
is moved from cluster S u to S v as soon as this movement leads to

higher score of objective function I ∗
1 

. To facilitate our discussion,

the new function value as sample x i is moved from S u to S v is for-

mulated as following. 

� I ∗1 (x i ) 

= 

(D v + x i ) 
′ (D v + x i ) 

n v + 1 

+ 

(D u − x i ) 
′ (D u − x i ) 

n u − 1 

− D 

′ 
v D v 

n v 
− D 

′ 
u D u 

n u 

= 

D 

′ 
v D v + 2 x ′ 

i 
D v + x ′ 

i 
x i 

n v + 1 

+ 

D 

′ 
u D u − 2 x ′ 

i 
D u + x ′ 

i 
x i 

n u − 1 

− D 

′ 
v D v 

n v 
− D 

′ 
u D u 

n u 

= 2 x ′ i 
D v 

n v + 1 

− 2 x ′ i 
D u 

n u − 1 

+ 

D 

′ 
v D v 

n v + 1 

+ 

D 

′ 
u D u 

n u − 1 

+ 

x ′ 
i 
x i 

n v + 1 

+ 

x ′ 
i 
x i 

n u − 1 

− D 

′ 
v D v 

n v 
− D 

′ 
u D u 

n u 
(14)

In each iteration of the clustering, sample x i is randomly selected.

The algorithm checks whether moving x i from its current cluster

to any other cluster will lead to higher I ∗
1 

(i.e., �I ∗
1 

> 0 ). If it is

the case, x i is moved to another cluster. The clustering procedure

is detailed in Algorithm 1 . 

As seen from Step 3 of Algorithm 1 , the initialization of our

method is different from most of the current practice of k -means,

there is no assignment of each sample to its closest initial cen-

troid. On the contrary, each sample x i is assigned with a random

cluster label (ranges from 1 to k ). This allows to calculate an initial

score of I ∗1 and the composite vector D of each cluster. It is pos-

sible to do the initial assignment following the way of k -means or

k -means++ [12] . However, as will be revealed in Section 5 , initial-

ization under either k -means manner or k -means++ manner im-

proves the clustering quality slightly. However, extra computation

is required in such kind of initial assignment. 

During each iteration, each sample x i ∈ X is checked in random

order. The optimization in Step 8 –10 seeks the movement of x i 
that leads to the highest increase of function score. From the op-

timization view, the algorithm reduces the clustering distortion

greedily. While from another view, the seeking process is compa-
able to the sample-to-centroid assignment in traditional k -means.

hey are actually on the same computational complexity level. 

Whereas it is not necessary that we must seek the best move-

ent for x i . As we discover by experiment, it is feasible that mov-

ng x i to another cluster as long as we find �I ∗
1 
(x i ) is greater than

 . On one hand, this will speed-up the iteration. On the other hand

uch kind of scheme usually takes more rounds to reach to the

ame level of distortion. However, we discover that such kind of

ess greedy scheme results in lower clustering distortion if the it-

ration loops for sufficient number of times. 

Moving x i from one cluster to another ( Step 9 ) is very conve-

ient to take. It includes the operation that updates the cluster la-

el of x i and the operation that updates the composite vector for

luster S v and S u , viz., D v = D v + x i , D u = D u − x i . 

Note that this incremental updating scheme is essentially differ-

nt from online learning vector quantization (LVQ) [33] , in which

he cluster centroids are updated incrementally. In the above it-

ration procedure, no cluster centroids are explicitly produced. As

 result, it is no need to update cluster centroid. The clustering

teration is explicitly driven by an objective function rather than

y the discrepancy between cluster centroids and their cluster

embers. As revealed later in the experiment, compared to LVQ,

lgorithm 1 is more efficient and leads to considerably lower dis-

ortion. 

Fig. 1 illustrates three iterations of Algorithm 1 in 2D case. As

hown in the figure, the initial clustering result is random and

essy. Samples belonging to different clusters are totally mixed

p. However, only after one round of iteration, the clustering re-

ult becomes much more compact. The clustering terminates at the

0 th round, where Lloyd ’s condition is reached. The optimum of

his procedure is analyzed in Appendix A and its convergence is

roved in Appendix B . 

Overall, method presented in Algorithm 1 is different from tra-

itional k -means in three major aspects. Firstly, no initial assign-

ent is required. Moreover, the egg-chicken loop in the traditional

 -means has been replaced by a simpler stochastic optimization

rocedure. Furthermore, unlike traditional k -means, it is not nec-

ssary to seek the best movement for each sample in the iteration.

ue to the essential upgrade of our method makes over traditional

 -means, it is named as k -means # . 

The method presented in Algorithm 1 is on the same complex-

ty level as traditional k -means (i.e., O ( t · n · d · k )), which is unbear-

bly slow when dealing with large-scale data. In order to adapt

t to large-scale task, the method is revised into a top-down hi-

rarchical clustering. Specifically, at each time, one intermediate

luster is selected and bisected into two smaller clusters by calling

lgorithm 1 . The details of this method are given in Algorithm 2 . 

As shown in Algorithm 2 , priority queue Q pops out one clus-

er for bisecting each time. As discussed in [32] , there are ba-

ically two ways to organize the priority queue. One can priori-
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Fig. 1. Illustration of direct k -way k -means clustering with Algorithm 1 . The clustering process starts from the state that samples are all assigned with random label. The 

final cluster centroids in (c) form a convex partition over the 2D space, which are called as Voronoi diagram. According to Lloyd ’s condition, all the samples belonging to one 

cluster fall into the same Voronoi cell. 

Algorithm 2 Bisecting k -means # . 

1: Input : matrix X n ×d 

2: Output : S 1 , . . . , S r , . . . S k 
3: Treat X as one cluster S 1 ; 

4: Push S 1 into a priority queue Q; 

5: i = 1; 

6: while i < k do 

7: Pop cluster S i from queue Q

8: Call Alg. 1 to bisect S i into { S i , S i +1 } ; 
9: Push S i , S i +1 into queue Q; 

10: i = i + 1; 

11: end while 
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ize the cluster with biggest size or the one with highest average

ntra-cluster distance to split. Similar as [32] , we find splitting the

iggest cluster usually demonstrates more stable performance. As a

esult, the queue is sorted in descending order by the cluster sizes

n our practice. 

It is possible to partition the intermediate cluster into more

han two clusters each time. In the following, we are going to show

hat this bisecting scheme achieves highest scalability among all

lternative top-down secting schemes. 

.2. Scalability analysis 

In this section, the computation complexity of Algorithm 2 is

tudied by considering the total number of comparisons required

n the series of bisecting clustering. The number of iterations in

ach bisecting is assumed to be a constant by taking the average

umber of iterations. 

In order to facilitate the analysis while without loss of gener-

lity, we assume that each intermediate cluster in Algorithm 2 is

artitioned evenly. In addition, we generalize Algorithm 2 to an s-

ecting algorithm. Namely, an intermediate cluster is partitioned to

 ( s ≥ 2) clusters. Now we consider the size of series of intermedi-

te clusters that are produced when performing sequential secting.

iven q is the depth of splitting, it is easy to see 	 log s k 
 = q + 1 .

he sizes of all intermediate clusters are given as following. 

n, 
n 

s 
, 

n 

s 
, . . . ︸ ︷︷ ︸ 

s 

, 
n 

s 2 
, 

n 

s 2 
, . . . ︸ ︷︷ ︸ 

s 2 

, . . . , 
n 

s q 
, 

n 

s q 
, . . . ︸ ︷︷ ︸ 

s q 

s a result, the number of samples to be visited during the clus-

ering procedure is 

n + 

n 

s 
∗ s 1 + 

n 

s 2 
∗ s 2 + 

n 

s 3 
∗ s 3 · · · + 

n 

s q 
∗ s q 

= n + n + n + n + · · · + n ︸ ︷︷ ︸ 
q 
= n ∗ (1 + q ) 

≈ n ∗ log s k. (15) 

onsidering that one sample has to compare with s − 1 centroids

ach time, the total number of comparisons is 

n ∗ (s − 1) ∗ log s k. (16) 

iven n and k are fixed, Eq. (16) increases monotonically with re-

pect to s . As a result, the number of comparisons reaches to the

inimum when s = 2 i.e., n log 2 k . To this end, it is clear that bisec-

ion is the most efficient secting scheme. 

Compared with Algorithm 1 , the complexity of Algorithm 2 is

educed to O ( ̄t ·n ·d ·log(k )) , where t̄ is the average number of iter-

tions in each bisecting. Compared with t in traditional k -means,

 ̄ is much smaller given the scale of clustering problem is much

maller in terms of both the size of input data and the num-

er of clusters to be produced. As a result, the complexity of

lgorithm 1 has been largely reduced since term n · d has been

ultiplied by a much smaller factor t̄ ·log(k ) . 

Although Algorithm 2 is efficient, the clustering result produced

y Algorithm 2 unfortunately does not satisfy with Lloyd ’s condi-

ion. This problem is illustrated in Fig. 2 . As one of the clusters

s further partitioned into two (from Fig. 2 (a) to Fig. 2 (b)), the

artition over 2D space is formed by centroids changes. Cluster C

laims bordering points from cluster B. However, points from clus-

er B cannot be reassigned to cluster C if no further intervention is

nvolved. This is actually an underfitting issue and exists for any

ierarchical clustering method. Fortunately, this issue can be al-

eviated by adopting Algorithm 1 as a refinement procedure after

lgorithm 2 outputs k clusters. To do so, extra time is required. It

herefore becomes a problem of balancing between efficiency and

uality. 

According to our observation, it is possible to further speed-up

he proposed k -means # . After a few iterations, both k -means and

 -means # will be trapped in a local minima. Only samples that

ordering between different clusters are shuffled from one clus-

er to another. As a result, given a sample, it is no need to search

or the best movement among k clusters. Instead, the sample only

eeds to compare to the closest k 0 ( k 0 � k ) centroids (or clusters)

o search for the suitable movement. We find that, this simple

odification leads to typically 7 ∼ 8 times speed-up while without

ignificant performance degradation. 

. Experiments 

In this section, the effectiveness of proposed clustering method,

amely k -means # is studied under different scenarios. In the first

xperiment, dataset SIFT1M [5] is adopted to evaluate the clus-

ering quality. In the second experiment, k -means # is tested on
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Fig. 2. Illustration of two consecutive bisections in the bisecting clustering where Lloyd ’s condition breaks. 

Table 1 

Configurations of k -means and its variants and their corresponding abbreviations. 

k -means k -means # 

Initial assignment k -way bisecting k -way bisecting 

Random k -means [8] BsKM k -means # (rnd) BsKM 

# (rnd) 

Probability based [12] k -means + [12] BsKM ++ k -means # (kpp) BsKM 

# (kpp) 

Non − − k -means # (non) BsKM 

# (non) 
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the nearest neighbor search task based on product quantizer (PQ)

[5] in which this method is adopted for quantizer training. In the

third experiment, k -means # has been applied to traditional doc-

ument clustering. Following the practice of [1,32] , 15 document

datasets 2 have been adopted. In the last experiment, the scalability

of k -means # has been tested on large-scale image clustering task,

for which the number of images we use is as large as 10 million. 

In our study, the performance from traditional k -means is

treated as comparison baseline. In addition, representative k -means

variants, such as Mini-Batch [16] , Repeated Bisecting k -means

(RBK) [32] , online Learning Vector Quantization (LVQ) [33] and k -

means++ [12] are considered in the comparison. For Mini-Batch,

our configuration makes sure that the iteration covers 10% of the

input data. The configuration is fixed across all the experiments.

For RBK, we select the objective function that maximizes the aver-

age Cosine similarity between samples within one cluster, which is

the special case of ours given the input data is l 2 -normalized. LVQ

is similar to k -means except that in each round, a cluster centroid

is updated as soon as a sample is assigned. The updating rate starts

from 0.01 and decreases at a pace of 4 × 10 −4 in one iteration. 

As shown in Table 1 , there are several variants of k -means and

k -means # due to the differences in initial assignment schemes and

variations in partitioning strategies (i.e., direct k -way or bisecting).

In the table, ‘initial assignment’ refers to the operation of select-

ing samples as initial centroids and assigning each sample to its

closest initial centroid. When the initial assignment is operated by

selecting seeds randomly as traditional k -means, it is denoted as

‘rnd’. When the initial centroids are selected based on probability

as k -means++, it is denoted as ‘kpp’. While for the initialization

without initial assignment (proposed by us) is denoted as ‘non’. In

this initialization, a random label is assigned to each sample. In

the experiments, all the variants out of these different configura-

tions on k -means as well as k -means # are considered. Their con-

figurations and corresponding abbreviations are shown in Table 1 .

Noted that BsKM 

# (rnd) is the same as RBK [32] if the input data

is l 2 -normalized. The experiment in this section is conducted on

1 million SIFT features [34] . The features are clustered into 10,0 0 0

partitions. 

In addition, we also study the performance trend of k -means # 

when Steps 7 - 10 in Algorithm 1 are modified to moving the sam-
2 Available at http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz 
le as soon as �I 1 ( x i ) > 0. The variants under this modification are

enoted as k -means # ( · )+Fast 3 . All the methods considered in the

aper are implemented in C++ and the simulations are conducted

n a PC with 2.4 GHz Xeon CPU and 32 G memory setup. 

.1. Evaluation of clustering distortion 

Since k -means and most of its variants share the same objective

unction ( Eq. (1) ), it is straightforward to evaluate the clustering

erformance by checking to what degree the objective is reached.

he average distortion (given in Eq. (17) ) is adopted for evaluation

2] , which takes average over Eq. (1) , 

 = 

∑ 

q (x i )= r ‖ C r − x i ‖ 

2 

n 

. (17)

or above equation, the lower the distortion value, the better is the

lustering quality. 

The first experiment mainly studies the behavior of the pro-

osed k -means # under different initializations. The average dis-

ortion curves produced by variants direct k -way k -means # are

iven in Fig. 3 (a) as a function of numbers of iteration. Tradi-

ional k -means is treated as baseline for performance compari-

on. The result shows that clustering distortion of k -means # drops

aster than traditional k -means. The average distortion from tradi-

ional k -means is around 40,450 after 130 iterations. In contrast,

 -means # without initial assignment ( k -means # (non)) is able to

each to the same distortion level after only 7 iterations. More-

ver, we find that initializing k -means # as traditional k -means way

 k -means # (rnd)) or as k -means++ ( k -means # (kpp)) allows the iter-

tion to start from a low distortion level. Nevertheless the advan-

age over k -means # (non) fades away after 15 iterations. In compar-

son to k -means # (non), the extra cost is required for clustering that

dopts initial assignment, which is close to (‘rnd’ case) or higher

han (‘kpp’ case) the cost of one round iteration. 

The second experiment studies the performance trend of

lgorithm 1 when Step s 7 - 10 do not seek the best movement ( k -

eans # ( · )+Fast). As shown in Fig. 3 (b), the distortion drops slower

han k -means # (non) which seeks the best movement. However,

ower distortion is achievable by k -means # (rnd)+Fast as the num-

er of iterations is sufficiently large e.g., 20 . This indicates that
3 Note that this is not applicable for bisecting k -means # . 

http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/datasets.tar.gz
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Fig. 3. The experiments are conducted on SIFT1M for figures (a)–(c) and on SIFT100K for figure (d). The results show different performance: (a) impact of initialization in 

different ways; (b) fast version of k -means # by not seeking optimal movement in the steps 7–10 of Algorithm 1 ; (c) Comparison of k -means # to variants of k -means; (d) 

significance of improvement over other k -means variants achieved by k -means # by repeating the experiments by 128 runs. 
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hen the optimization scheme is less greedy, it is less likely to

e trapped in a worse local optima. This observation applies to

 -means # under different types of initialization. Noted that the

ime cost for k -means # ( · )+Fast is lower than that of k -means # 

hat seeks the best movement in each iteration. Whereas, k -

eans # ( · )+Fast usually needs a few more number of iterations

o reach to the similar distortion level. Overall, as investigated in

ection 5.4 , k -means # ( · )+Fast is 5% faster than k -means # ( · ). 

Fig. 3 (c) studies the trend of average distortion among the pro-

osed k -means # (specifically k -means # (non)), traditional k -means,

 -means++, Mini-Batch and LVQ. For all the methods presented,

heir distortion decreases steadily as the iteration continues. A big

erformance gap is observed between Mini-Batch and other k -

eans variants. In addition k -means and k -means++ share simi-

ar distortion curve. k -means # (non) outperforms k -means and k -

eans++ after only 7 iterations. Most of the methods including

 -means and k -means++ take more than 120 iterations to finally

onverge. On the other hand, little distortion is observed after 20

terations, which implies the validity of early termination at i.e., 20 .
lthough similar as k -means # , LVQ updates the intermediate clus-

ers incrementally, updating cluster centroid directly turns out to

e inefficient, which leads to considerably poor performance. 

Since k -means and its variants are all sensitive to initialization,

he performance fluctuates from one run to another. The candle-

tick chart shown in Fig. 3 (d) further confirms the significance of

he improvement achieved by k -means # . This chart is plotted with

28 clustering runs ( k = 1 , 024 ) on SIFT100K [5] for each method.

s shown in the figure, although the performance fluctuates for

ll the methods, the variations are minor. Similar as previous ob-

ervation, there is no significant difference between traditional k -

eans and k -means++. In contrast, the performance gap between

 -means # and traditional k -means is much more significant than

he performance variations across different runs. 

Table 2 shows the average distortion of different k -means vari-

nts under bisecting strategy. The result from k -means (after 130

terations) is presented for the comparison. As shown from the ta-

le, the average distortion from all bisecting methods are on the

evel of 4.5 × 10 4 . Methods built upon Algorithm 1 always perform
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Table 2 

Average distortion from k -means variants under bisecting strategy. 

Method k -means RBK BsKM BsKM ++ BsKM 

# (non) BsKM 

# (rnd) BsKM 

# (kpp) 

E 40450.0 45713.5 45835.2 45823.8 45650.7 45661.2 45658.4 

E after Rfn. − 43364.4 43323.9 43366.2 43293.3 43285.5 43285.4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Clustering performance (average entropy) on 15 datasets. 

k = 5 k = 10 k = 15 k = 20 

k -means 0.539 0.443 0.402 0.387 

k -means ++ 0.550 0.441 0.403 0.389 

Mini-Batch 0.585 0.488 0.469 0.475 

LVQ 0.800 0.761 0.681 0.674 

k -means # (non) 0.552 0.442 0.388 0.368 

k -means # +Fast 0.506 0.419 0.380 0.353 

BsKM 0.532 0.438 0.410 0.373 

BsKM ++ 0.507 0.422 0.400 0.379 

BsKM 

# (non) 0.514 0.388 0.353 0.329 

RBK 0.486 0.402 0.366 0.339 
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4 The class label of each document in the ground-truth is given by human being. 
better. The average distortion from all bisecting clustering methods

are much higher than that of k -means. They are actually only close

to the distortion level of k -means after one iteration. However, the

merit of clustering with bisecting strategy is that it is more than 20

times faster than k -means of a single iteration. The relatively poor

clustering quality produced by bisecting strategy is mainly due to

the issue of underfitting (as discussed in Section 4.2 ). The cluster-

ing results can be further refined by Algorithm 1 as shown on the

3rd row of Table 2 . 

As learned from above experiments, on one hand initial assign-

ment under k -means manner or under k -means++ manner is able

to improve the performance of k -means # slightly. On the other

hand, the initial assignment slows down the method considerably.

A trade-off has to be made. In the following experiments, only

the results from two representative configurations of k -means # ,

namely k -means # (non) and k -means # (rnd)+Fast are presented. k -

means # (rnd)+Fast is written as k -means # +Fast for succinctness in

the rest of the paper. We leave other possible configurations to the

readers. 

5.2. Nearest neighbor search by product quantizer (PQ) 

In this section, k -means # is applied for visual vocabulary train-

ing using product quantization [5] . Following the practice of [5] ,

100 K SIFT features are used for product quantizer training, while

SIFT1M set [5] is encoded with the trained product quantizers as

the reference set for nearest neighbor search (NNS). The obtained

recall@top-k is averaged over 10 0 0 queries for each method. In the

experiment, two different settings are tested for product quantizer.

Namely, the 128 -dimensional SIFT vector is encoded with 8 and

16 product quantizers, respectively. For clarity, the evaluations are

separately conducted for direct k -way and bisecting k -means. 

Recall@top-100 for direct k -way are presented in Fig. 4 (a)–

(d) under two different settings ( m = 8 and m = 16 ), where m is

the number of divisions that PQ applies on a vector [5] . As seen

from the figures, the performances from k -means, k -means++ and

k -means # (non) are all very close to each other under different

settings. The product quantizer trained with bisecting clustering

methods shows only 0.1–1.3 % lower performance than that of di-

rect k -way methods. This basically indicates that product quantizer

itself is insensitive to the clustering quality. The performance of

Mini-Batch and RBK is around 2 –6% lower than the other methods.

The poor performance of RBK basically indicates the optimization

objective function defined under Cosine similarity is not directly

feasible for general l 2 -space. 

5.3. Document clustering 

In this section, the performance of proposed method is eval-

uated under the context of document clustering. Following in [1] ,

15 document datasets are used for evaluation. The documents have

been represented with TF/IDF model and normalized to unit length.

Similar to [1] , entropy as follows is adopted for the evaluation 

Entropy = 

k ∑ 

r=1 

n r 

n 

1 

log c 
∗

c ∑ 

i =1 

n 

i 
r 

n r 
∗ log 

n 

i 
r 

n r 
, (18)

where c is the number of classes. Eq. (18) evaluates to what de-

gree that elements from the same class are put in one cluster. The
ower of the value, the better is the performance. In the experi-

ent, each method performs clustering for 10 runs, and the run

ith the lowest entropy is presented in Table 3 . The presented en-

ropy are averaged over 15 datasets. 

In general, k -means # under different configurations performs

onsiderably better. Furthermore, methods with bisecting strat-

gy demonstrate slightly better performance than that of direct k -

ay in the document clustering task. Similar observation is shared

n [32] . As observed in [32] , the tightness of different document

lasses are different. Moreover, there is a discrepancy between

F/IDF model and human perception about document classes. 4 

ower distortion does not necessarily mean better cluster quality

i.e., lower entropy). Compared to direct k-way clustering, bisect-

ng strategy partitions the documents in a top-down manner. From

he top view, it is easier for bisecting to partition tight cluster from

oose one in its early stage. Due to the nature of bisecting strategy,

he bisecting in later stages is restricted from moving documents

rom tight to loose. Because of that, the integrity of document

lasses with different tightness are largely preserved. In contrast,

n direct k-way, documents in different classes are free to move to

chieve lower distortion since the proposed k -means iteration is a

reedy process. As k increases, documents have more wrong can-

idate clusters to move in to attain lower distortion. Therefore per-

ormance gap between bisecting and k-way grows as k increases in

able 3 . Overall, BsKM 

# (non) shows the best performance. The per-

ormance of RBK (the same as BsKM 

# (rnd)) is close to BsKM 

# (non).

he marginal performance gap between these two methods is due

o the difference in their initialization. 

.4. Scalability test on image clustering 

In this section, the scalability of the proposed k -means is tested

n image clustering. The experiment is conducted on 10 million

lickr images ( Flickr10M ), which are a subset of YFCC100M [35] .

essian-Affine [36] keypoints are extracted from each image and

re described by RootSIFT feature [37] . Finally, the RootSIFT fea-

ures from each image are pooled by VLAD [38] with a small vi-

ual vocabulary of size 64 . The resulting 8192 -dimensional feature

s further mapped to 512 dimensions by PCA. Following [38] , the

nal VLAD vector is normalized to unit length. In the direct k -way

lustering case, we set the number of maximum iterations for all

ethods to 20 . While for the bisecting case, there is no threshold
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Fig. 4. Performance of nearest neighbor search by PQ on SIFT1M when adopting different clustering methods for quantizer training. The size of each product quantizer is 

fixed to 256 across all the experiments. The asymmetric distance calculation (ADC) [5] is adopted for nearest neighbor search. 
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n the number of iterations. The results reported in this section

ave been averaged over 10 runs for each method. 

In the first experiment, clustering methods are tested in the

ay that the scale of input images varies from 10K to 10M. While

he number of clusters to be produced is fixed to 1024 regardless

f the size of dataset. The time costs for direct k -way and bisecting

ethods are presented in Fig. 5 (a) and (b). Accordingly, the average

istortion of all the methods are presented in Fig. 6 (a). 

As shown in the figures, k -means # exhibits slightly faster speed

ver k -means and its variants across different scales of input data

nder both direct k -way and bisecting cases. The speed-up be-

omes more significant as the scale of input data increases. The

igher efficiency of these methods is mainly attributed to the no

nvolvement of initial assignment. Compared to k -means # (non), k -

eans # +Fast takes extra time. However, the cost of initial assign-

ent is compensated later by no seeking of the best movement.

ompared with direct k -way clustering, methods with bisecting

trategy achieve much higher scalability. In particular, BsKM 

# (non)
hows the highest scalability. It only takes less than 94 minutes to

luster 10 million vectors (in 512 dimensions) into 1024 clusters.

he efficiency of Mini-Batch is close to BsKM 

# (non). However, as

hown in Fig. 6 (a), its quality is poor in most of the cases. Over-

ll, k -means # +Fast achieves the highest speed efficiency and low-

st distortion among all direct k -way clustering methods. While

n the bisecting case, BsKM 

# (non) shows the best performance in

erms of both speed efficiency and clustering quality. Similar to the

xperiments in Section 5.1 , the average distortion introduced by

isecting clustering is much higher than direct k -way due to the

roblem of under-fitting. 

In addition, the scalability of clustering methods is tested in the

ay that the number of clusters by varying from 1024 to 8192 ,

hile the scale of input data is fixed to 1 million. Fig. 5 (c) and

d) show the time cost of all 9 methods. Accordingly, the average

istortion from all these 9 methods are presented in Fig. 6 (b). As

hown in the figures, for all direct k -way clustering methods, the

ime cost increases linearly as the number of clusters increases.
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Fig. 5. Scalability test by varying the scale of input data: (a) and (b) and by varying the number of clusters: (c) and (d). 
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Fig. 6. Average distortion from all 9 methods under two different scalability testings on Flickr10M (best viewed in color). 
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n + 1 n + 1 
ini-Batch is no longer efficient as k increases. In contrast, the

ime cost of all bisecting methods remains steady across differ-

nt cluster numbers. In terms of clustering quality, as seen from

ig. 6 (b), in both direct k -way and bisecting cases, clustering driven

y the proposed optimization procedure ( Algorithm 1 ) performs

onsiderably better. A clear trend is observed from Fig. 6 (b), meth-

ds based on Algorithm 1 shows increasingly higher performance

han the rest as k grows. Overall, clustering driven by the proposed

ptimization process shows higher speed and better quality. The

ighest speed is achieved by BsKM 

# (non), for which only 8 min-

tes are required to cluster 1 million high dimensional data into

192 clusters. Due to extra cost in initial assignment, bisecting with

raditional k -means and k -means++ still shows around 35% slower

peed than BsKM 

# (non). 

As a summary, clustering based on Algorithm 1 shows superior

erformance in terms of both speed efficiency and quality under

ifferent scenarios. This is mainly due to the nature of incremental

pdating scheme, which allows the cluster structures to be fine-

uned in a more efficient way. When the proposed Algorithm 1 is

erformed under bisecting manner (i.e., BsKM 

# (non)), it shows two

rders of magnitude faster than traditional k -means. 

. Conclusion 

We have presented a novel k -means variant. Firstly, a cluster-

ng objective function that is feasible for the whole l 2 -space is

eveloped. Supported by the objective function, the traditional k -

eans clustering has been modified to simpler form. In this novel

 -means variant, we interestingly find that neither the costly ini-

ial assignment nor the seeking of closest centroid for each sample

n the iteration are necessary. This leads to higher speed and con-

iderably lower clustering distortion. Furthermore when the pro-

osed clustering method is undertaken in the ways of top-down

isecting, it achieves the highest scalability and best quality among

ll hierarchical k -means variants. Extensive experiments have been

onducted in different contexts and on various datasets. Superior

erformance over most of the k -means variants is observed across

ifferent scenarios. 
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ppendix A. Optimum of k -means # 

As shown in Eqs. 13 and 9 , two optimal objectives are quite

imilar. In this section, we show that optimal solution with respect

o objective function ( Eq. (9) ) can be reached with incremental up-

ating scheme presented in Algorithm 1 . 

roof. For contradiction, let A 

o = { S 1 , S 2 , . . . , S k } be an optimal so-

ution and assume that there exists one element d and clusters

 i and S j such that d ∈ S i . Now consider the clustering solution

 

∗ = { S 1 , S 2 , . . . , { S i − d} , . . . , { S j + d} , . . . , S k } . Let D i , C i , and D j , C j
e the composite and centroid vectors of cluster S i − d and S j , re-
pectively. Let e = I 1 (A 

o ) − I 1 (A 

∗) , then 

e = 

(D i + d) ′ (D i + d) 

n i + 1 

+ 

D 

′ 
j 
D j 

n j 

−
(

D 

′ 
i 
D i 

n i 

+ 

(D j + d) ′ (D j + d) 

n j + 1 

)

= 

(
(D i + d) ′ (D i + d) 

n i + 1 

− D 

′ 
i 
D i 

n i 

)
−

(
(D j + d) ′ (D j + d) 

n j + 1 

−
D 

′ 
j 
D j 

n j 

)

= 

2 n i d 
′ D i + n i d 

′ d − D 

′ 
i 
D i 

n i (n i + 1) 
−

2 n j d 
′ D j + n j d 

′ d − D 

′ 
j 
D j 

n j (n j + 1) 

et’s define μi = 

D ′ 
i 
D i 

n i (n i +1) 
, μ j = 

D ′ 
j 
D j 

n j (n j +1) 
are the average pairwise

nner product in cluster S i and S j , respectively. In addition, δi and

j are given as the average inner-products between d and elements

n S i and S j , respectively, viz δi = 

d ′ D i 
n i 

, and δ j = 

d ′ D j 
n j 

. Above Equa-

ion is rewritten as 

e = 

(
2 n i δi 

n i + 1 

+ 

d ′ d 
n i + 1 

− n i μi 

n i + 1 

)
−

(
2 n j δ j 

n j + 1 

+ 

d ′ d 
n j + 1 

− n j μ j 

n j + 1 

)

≈
(

2 δi − 2 δ j + 

d ′ d 
n i + 1 

)
−

(
μi − μ j + 

d ′ d 
n j + 1 

)
(19) 

iven the fact that (2 δi − 2 δ j + 

d ′ d 
n i +1 ) < (μi − μ j + 

d ′ d 
n j +1 ) , we have

 1 (A 

o ) < I 1 (A 

∗) , which is contradicting. �

ppendix B. Convergence of k -means # 

S i and S j are two clusters. d is initially part of S i , and D i is the

omposite of S i exclude d, C i is the centroid of S i exclude d, D j , C j 
s the composite and centroid of cluster S j , the move condition of

 from S i to S j should satisfied 

(D i + d) ′ (D i + d) 

n i + 1 

+ 

D 

′ 
j 
D j 

n j 

< 

D 

′ 
i 
D i 

n i 

+ 

(D j + d) ′ (D j + d) 

n j + 1 

(B.1) 

his equation can be rewritten as: 

(D i + d) ′ (D i + d) 

n i + 1 

− D 

′ 
i 
D i 

n i 

< 

(D j + d) ′ (D j + d) 

n j + 1 

−
D 

′ 
j 
D j 

n j 

D 

′ 
i 
D i + 2 d ′ D i + d 2 

n i + 1 

− D 

′ 
i 
D i 

n i 

< 

D 

′ 
j 
D j + 2 d ′ D j + d 2 

n j + 1 

−
D 

′ 
j 
D j 

n j 

2 n i d 
′ D i + n i d 

2 − D 

′ 
i 
D i 

n i (n i + 1) 
< 

2 n j d 
′ D j + n j d 

2 − D 

′ 
j 
D j 

n j (n j + 1) 

2 

n i 

n i + 1 

d ′ D i 

n i 

− D 

′ 
i 
D i 

n i (n i + 1) 
+ 

d 2 

n i + 1 

< 2 

n j 

n j + 1 

d ′ D j 

n j 

−
D 

′ 
j 
D j 

n j (n j + 1) 
+ 

d 2 

n j + 1 

Now if we assume that both n i and n j are sufficiently large, then
n i 

n i +1 and 

n j 
n j +1 will be close to 1 . Under these assumptions, we can

et 

2 

d ′ D i 

n i 

− D 

′ 
i 
D i 

n i (n i + 1) 
+ 

d 2 

n i + 1 

< 2 

d ′ D j 

n j 

−
D 

′ 
j 
D j 

n j (n j + 1) 
+ 

d 2 

n j + 1 

. 

ow μi = 

D ′ 
i 
D i 

n i (n i +1) 
, μ j = 

D ′ 
j 
D j 

n j (n j +1) 
are defined as the average pair-

ise inner product in cluster S i and S j respectively. δi and δj are

iven as the average inner-products between d and elements in S i 

nd S j respectively, viz δi = 

d ′ D i 
n i 

, and δ j = 

d ′ D j 
n j 

, the following in-

quation holds. 

 δi − 2 δ j + 

d ′ d 
< μi − μ j + 

d ′ d 
. (B.2) 
i j 
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