Fast Tracking of Near-Duplicate Keyframes in Broadcast
Domain with Transitivity Propagation

Chong-Wah Ngo
Dept of Computer Science
City University of Hong Kong

cwngo@cs.cityu.edu.hk

ABSTRACT

The identification of near-duplicate keyframe (NDK) pairs is
a useful task for a variety of applications such as news story
threading and content-based video search. In this paper,
we propose a novel approach for the discovery and tracking
of NDK pairs and threads in the broadcast domain. The
detection of NDKs in a large data set is a challenging task
due to the fact that when the data set increases linearly,
the computational cost increases in a quadratic speed, and
so does the number of false alarms. This paper explores
the symmetric and transitive nature of near-duplicate for
the effective detection and fast tracking of NDK pairs based
upon the matching of local keypoints in frames. In the de-
tection phase, we propose a robust measure, namely pattern
entropy (PE), to measure the coherency of symmetric key-
point matching across the space of two keyframes. This
measure is shown to be effective in discovering the NDK
identity of a frame. In the tracking phase, the NDK pairs
and threads are rapidly propagated and linked with tran-
sitivity without the need of detection. This step ends up
with a significant boost in speed efficiency. We evaluate
our proposed approach against a month of the TRECVID-
2004 broadcast videos. The experimental results indicate
that our approach outperforms other techniques in terms of
recall and precision with a large margin. In addition, by
considering the transitivity and the underlying distribution
of NDK pairs along time span, a speed-up of 3 to 5 times is
achieved when keeping the performance close enough to the
optimal one obtained by exhaustive evaluation.

Categories and Subject Descriptors

1.2.10 [Vision and Scene Understanding]: Video Analy-
sis; Perceptual Reasoning; H.2.8 [Database Application]:
Image Databases; Data Mining

General Terms

Algorithms, Design, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercia advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

MM’ 06, October 23-27, 2006, Santa Barbara, California, USA.

Copyright 2006 ACM 1-59593-447-2/06/0010 ...$5.00.

Wan-Lei Zhao
Dept of Computer Science
City University of Hong Kong

wzhao2@cs.cityu.edu.hk

Yu-Gang Jiang
Dept of Computer Science
City University of Hong Kong

yjiang@cs.cityu.edu.hk

Figure 1: Examples of NDK pairs due to lighting,
acquisition time, lens variations and manual editing.

Keywords

Near-Duplicate Detection, Keypoint Matching, Pattern En-
tropy, Keyframe Tracking, Transitivity Propagation.

1. INTRODUCTION

Near-duplicate keyframes (NDKs) are a group of keyframes
that are similar or nearly duplicate of each other, but ap-
pear differently due to variations introduced during acquisi-
tion time, lens setting, lighting condition and editing oper-
ation. Figure 1 shows four pairs of NDKs undergone vari-
ous changes. Previous studies in [5, 15] have demonstrated
the difficulty of NDK retrieval, where the use of simple and
global features such as color histogram can lead to poor per-
formance. In this paper, we investigate a more challenging
problem: the automatic and fast discovery of NDK pairs
and NDK threads without any prior knowledge of the un-
derlying data set (except knowing the videos are from the
broadcast domain).

Figure 2 illustrates the difficulty of our task. Given a
set of keyframes, our goal is to find the groups of NDK
pairs which link up each other to form separate threads. In
this figure, there are three threads of NDK groups (linked
by blue, red and green arrows). To detect these threads,
a straightforward approach is to exhaustively evaluate all
pairs of available keyframes. Basically two keyframes with
similar content are paired up, and subsequently the groups
of NDK pairs are formed to become threads. However, find-
ing a pair of NDKs is indeed a difficult task. Take a dataset
of 7,000 keyframes as an example. There are more than 24
millions of candidate pairs for comparison. Suppose among
them 3,000 pairs are near-duplicates. The chance of suc-
cessfully drawing one NDK pair is only 1.22¢~*. Compared
with NDK retrieval [5, 15], the automatic discovery problem
is challenging since there is no query to start with. Com-
pared with keyframe clustering, the problem appears com-

plicated since the number of non near-duplicate keyframes
(outliers) is much more than the near-duplicate ones. With
a large portion of data being outliers, clustering algorithms
can become highly ineffective.

The findings of recent works in [5, 15] coincidentally con-
clude that local keypoints [6], compared with color features,
are robust for NDK retrieval. A reliable measure is to
match keypoints across two frames, then count the number
of matching point-pairs as the similarity [5]. The cost, how-
ever, is the time spent in keypoint matching. In a keyframe
of resolution 352 x 264, the number of keypoints typically
ranges from a few to several thousands. Comparing two
keyframes each of 1,000 keypoints involves up to half a mil-
lion of keypoint matchings. As a consequence, the problem
of NDK discovery becomes unaffordable in terms of time
and difficulty, due to the large amount candidate pairs at
both keyframe and keypoint levels.

In this paper, we propose a novel approach to solve the
discovery problem. The symmetric and transitive proper-
ties of near-duplicate are explored for this purpose. At the
keypoint level, NDK pairs are detected by a reliable key-
point matching algorithm. While at the keyframe level, the
NDK threads are rapidly propagated along the time span
without going through the detection phase. The novelty of
our approach lies in the proposal of pattern entropy to de-
pict keypoint matching for NDK detection, while transitivity
propagation is incorporated for fast tracking of keyframes.
The contributions of this paper are summarized as follows.

e Matching strategy. Based on the symmetric property
of NDK, we propose a one-to-one symmetric (OOS)
keypoint matching strategy to reliable match keypoints
across frames. In addition, an index structure LIP-IS
is proposed to support the fast filtering of keypoints
under OOS matching. The effectiveness of keypoint
matching has also been demonstrated for keyframe re-
trieval and high-level concept classification in our re-
cent work [16].

e Matching pattern. The matching patterns of NDK
pairs formed by OOS keypoint mapping are investi-
gated. Due to the nature of near-duplicate, the matched
lines between keypoints often show patterns that are
coherently matched in space. We explore this fact by
evaluating the spatial coherence of patterns in both
horizontal and vertical directions with a novel mea-
sure called pattern entropy (PE). The potential of PE
is confirmed with our empirical evaluation on a month
of TRECVID videos.

o Keyframe tracking. Exhaustive detection of NDK pairs
is time consuming. By observing the transitivity prop-
erty and the underlying distribution of NDK pairs, we
propose to efficiently propagate NDK pairs and their
threads without detailed investigation. The perfor-
mance of propagation can be close to the optimal one
obtained by the exhaustive approach.

The remaining of this paper is organized as follows. Sec-
tion 2 describes the existing approaches in near-duplicate re-
trieval and detection. Section 3 gives an overview of our pro-
posed framework and approach. Section 4 presents our pro-
posed keypoint matching strategy and filtering algorithm.
Section 5 proposes the measure of pattern entropy to evalu-
ate the patterns formed by keypoint matching. Section 6

discusses the transitivity propagation of NDK. Section 7
describes the NDK retrieval experiments, while Section 8
presents the experimental results on the discovery of NDK
pairs and threads with transitivity propagation. Finally,
Section 9 concludes this paper.

2. RELATED WORKS

Recently, NDK identification has attracted numerous re-
search attentions, mainly due to its unique role in news
search [2], topic detection and tracking (TDT) [14] and copy-
right infringement detection [5]. NDKs are commonly found
in broadcast videos. In TDT, NDKs provide a strong cue
to link and track topic-relevant news stories across sources,
languages and times. The recent work in [2] has also demon-
strated the usefulness of NDKs in boosting the performance
of interactive multimedia search.

The issues of duplicate and near-duplicate detection have
also been addressed in image fingerprinting literature [1, 7,
11, 12]. The ultimate aim is to identify the content (or
specifically fingerprint) by the image itself based on its own
low-level features for retrieving the suspicious pirated copies
of the image for human inspection. Our proposed work is
different from image fingerprinting in two aspects. First, we
use locally salient features [4, 6] to depict a keyframe con-
tent, while others [1, 7, 11, 12] mostly employ the global or
local statistics of features (e.g., color) and concatenate them
into a vector for retrieval. The use of single feature vector,
nevertheless, tends to generate many false positives and neg-
atives. Local features based upon keypoints, in contrast, are
tolerant to the perturbation of lighting, color and certain
transformations, despite the fact that additional computa-
tional cost is incurred for the need of point set matching.
Second, the problem nature is different for image finger-
printing and NDK detection in the broadcast domain. The
former is to identify suspicious candidates for human inspec-
tion, while the latter is to identify keyframes that nearly du-
plicate each other but span across the time axis and various
broadcast sources.

Representative works in NDK identification include [3, 5,
15]. In [3], NDKs (or Candidate Repeating Keyframes) are
detected by ordering and examining the N neighbors of a
keyframe. A “jump” indicator is used to detect NDKs by
investigating the first derivation of keyframe similarity. This
approach is heuristic and sensitive to the setting of several
empirical parameters. In [15], a stochastic attributed rela-
tional graph (ARG) matching with part-based representa-
tion is proposed for NDK identification. Under this setting,
ARG is a fully connected graph with SUSAN detected key-
points as vertices, and the matching of ARGs is constrained
by the spatial relation imposed by keypoints. For speed rea-
son, a distribution-based similarity model is learnt for NDK
identification. Although interesting, the approach in [15]
suffers from the limitations of slow matching speed and the
requirement of heuristic parameters for learning.

In contrast to [15], the PCA-SIFT descriptors of keypoints
are utilized in [5] for direct point set matching without learn-
ing. To accelerate matching speed, an efficient index struc-
ture based on locality sensitive hashing (LSH) is further
proposed. Nevertheless, LSH requires several user-defined
parameters which have an effect on the distortion and gran-
ularity of the search.

In this paper, as in [5], we adopt direct keypoint match-
ing, and utilize an index structure LIP-IS, which is shown to

CNN

ABC

Time (Days)

March 1st

March 15th

!

1
March 30th

Figure 2: Automatic discovery of NDK groups from a bunch of keyframes spanned across time.

be empirically more reliable than LSH, for fast filtering. For
NDK detection, instead of basing on the number of matched
keypoints [5] or a learned model [15], we explore the pat-
tern of keypoint matching with an entropy measure which
is demonstrated to be highly effective without the need of
learning.

3. OVERVIEW

3.1 Definition of Near-Duplicate

The definition of NDK in the broadcast domain has been
previously discussed in [15]. The variations in NDKs in-
clude scene, camera setting, and photometric and digiti-
zation changes. Broadly, we can categorize the factors of
“near-duplicate” into three groups: (i) same scenes and ob-
jects but being captured by the same or different cameras
probably under slightly different snapshots of time; (ii) reuse
of old materials, either at frame or region level, with ad-
ditional editing operations, (iii) a mixture of (i) and (ii).
Group (i) introduces keyframes of varying lighting, view-
point and camera setting. Group (ii) imposes the fact that
any two keyframes sharing near-duplicate regions can be de-
clared as NDK pairs. Group (iii) can basically populate a
large and diverse set of NDK pairs that are difficult to de-
tect.

3.2 Propertiesof Near-Duplicates

We explore the symmetric and transitivity of NDK pairs
for detection and propagation, respectively. The symmetric
property states that if a keyframe ki is a near-duplicate of
ka2, it implies that k2 is also a near-duplicate of k1. This
property indeed affects the design of the keypoint matching
strategy. In our approach, we utilize this property for the
reliable matching of keypoints, resulting in an effective way
of pruning false NDK pairs.

The transitive nature, to a certain extent, does exist in
NDKs. Given two pairs of NDK (ki, k2) and (kg, k3), one
may infer the NDK identity of (k1, k3). Figure 3 shows three

Figure 3: Transitivity of NDKs (top and middle:
positive samples, bottom: negative sample).

chains of NDKs. The transitivity holds for the chains of 3(a)
and 3(b), but not 3(c). The bridging keyframe in 3(c) is a
near-duplicate to the other two keyframes which are indeed
not an NDK pair. Interestingly, although Figure 3(c) is not
an NDK chain, no doubt that it is still useful for tasks like
news story threading, video search and high-level feature
annotation. Based on the NDK definition, we treat 3(a)
and 3(b) as the true positives of an NDK pair, while 3(c) as
a false positive. The detection of transitivity violation is not
considered in this paper. In our approach, the transitivity
of NDK is assumed and explored to rapidly track and link
the NDK threads across time without going through the
detection phase.

In the broadcast domain, the distribution of NDK pairs
across day difference follows the normal distribution. The
peak of the distribution occurs on the same day where near-
duplicate keyframes can be readily found across various chan-
nels. Figure 4 shows the distribution of NDK pairs across
a span of one month (March, 1998) of broadcast news from

Number of NDK Pairs

Time Span (Days)

Figure 4: NDK distribution along time span.

CNN and ABC. The peak is hit for the NDKs happened on
the same day. As the span increases, the number of NDKs
drops exponentially and one could rarely find an NDK pair
from two broadcasts with a date difference of 20 or more
days. With normal distribution, we propose an approach to
exhaustively find the majority of NDKs within d days, and
then grow the NDKs to locate pairs with day span larger
than d with transitivity propagation. Compared to the
brute-force approach which evaluates all pairs of keyframes,
transitivity propagation can speed up the detection process
by as fast as ten times, depending on the setting of d.

3.3 Proposed Framework

Figure 5 illustrates the overview of our framework. The
framework is composed of two portions: exhaustive detec-
tion within d days and transitivity propagation. In the de-
tection phase, the NDK identity is assessed based upon key-
point matching with the one-to-one symmetric (OOS) map-
ping strategy. An index structure LIP-IS is proposed for the
efficient filtering of keypoints with OOS. The mapping of
keypoints across frames ultimately forms patterns depicted
by the matching lines of keypoints. To this end, we propose
a novel method to measure the degree of matching coherency
in space by evaluating the entropy of the patterns. The de-
tected NDK pairs are then transitively grown to track the
remaining parts of the threads across time span.

4. KEYPOINT MATCHING

Keypoints are salient regions detected over image scales.
The descriptors of keypoints are invariant to certain trans-
formations that exist in different images. In the current
literature, there are numerous keypoint detectors and de-
scriptors. A good survey can be found in [10, 9]. In this
paper, we adopt Hessian-Affine [8] as the keypoint detector,
and PCA-SIFT [4] as the descriptor.

4.1 One-to-One Symmetric Matching

Given two sets of keypoints, the alignment between them
can be solved with bipartite graph matching algorithms.
Depending on the mapping constraint being imposed, we
can categorize them as many-to-many (M2M), many-to-one
(M20), one-to-many (O2M) and one-to-one (O20) match-
ing. The factors that affect the choice of matching strategy
include noise tolerance, similarity measure, matching effec-
tiveness and efficiency. In videos, frames always suffer from

Video keyframes (Time span: d days)

. ey

Keypoints matching using
LIP-1S+O0S

v

(Keyframes with matching Iines)

v

Matching pattern evaluation

v

Propagating across the data set
using transitj)vity property

“«

]

Figure 5: Framework Overview.

low-resolution, motion-blur and compression artifact. Noise
becomes a crucial factor in selecting a matching algorithm,
particularly when the matching decision is made upon the
small local patches surrounding keypoints. Noise can affect
the performance of keypoint detectors [6]. Localization er-
rors caused by detectors can deteriorate the distinctiveness
of PCA-SIFT. It becomes common that a keypoint fails to
find its nearest neighbor in another keyframe, and on the
other extreme, a keypoint can simply be matched to many
other keypoints due to mapping ambiguity. In principle, to
suppress faulty matches, O20 matching appears to be noise
tolerant although some correct matches may be missed.

For effective keyframe retrieval, the matching algorithm
should filter out as many false matches as possible. To retain
only the most reliable matches for retrieval, we introduce a
new scheme — namely one-to-one symmetric (OOS) match-
ing. OOS ensures all the matches are the nearest neighbors.
The symmetric property is also emphasized so that if key-
point P matches to @), then P is the nearest neighbor of Q
(i.e., P — Q) and similarly P <« Q. This property indeed
makes OOS stable and unique, i.e., the result of matching
a keypoint set A to set B is exactly the same as B to A,
unless there are keypoints that have more than one nearest
neighbor. Generally speaking, O20 matching cannot guar-
antee each matched keypoints pair to be meaningful. Some
false matches indeed could exist with high similarity value.
However, it becomes a rare case for these false matches to
be symmetrically stable and paired to each other in both
directions.

4.2 Fast Keypoint Filtering

Point-by-point matching between two sets is generally a
time consuming task especially when the set cardinality is
high. To allow fast retrieval of OOS, we perform an approx-
imate nearest neighbor search by indexing PCA-SIFT de-
scriptors in a multi-dimensional structure called LIP-IS. The
structure is a group of 36 histograms formed independently

s WILLEY

®) HH , :

16

© nH . snﬂnn

H”HI‘I an, n

1 6 1 16 21 26 31 36 1 6 1

16

21 26 31 36 1 6 11 16 21 26 31 36

Figure 6: Histograms of matching patterns for three keyframe pairs: (a) matching lines between keypoints,
(b) vertical histogram G,, (c) horizontal histogram §G,. (White and red lines indicate the correct and false

keypoint matches, respectively.)

by every components of PCA-SIFT. LIP-IS is constructed by
equally and independently quantizing each histogram into 8
bins, with a resolution of A = 0.25 (the range of a PCA-
SIFT components is [-1,1]). Given P = [p1, p2, .., Pi, ---, D36],
the index of P in dimension i is defined as
pi+1
Hp) = 1237 (1)
In total, this index structure is composed of 8 x 36 bins.
During indexing, a keypoint P is repeatedly indexed into
the corresponding bins of 36 histograms, according to its
quantized value in a particular dimension. Thus, each key-
point is hashed and then distributed into 36 bins in this
structure. In principle, the structure encodes the keypoints
of a keyframe by decomposing the PCA-SIFT components
and modeling them as 36 independent distributions. This
structure is intuitive and reasonable since the PCA-SIFT
components are orthogonal to each other. Based on this
structure, we define the function that any two keypoints P
and @ collide in dimension i if

Clqi,pi) = { 1if [H(q) — H(p:)| <1

0 Otherwise

When searching for the nearest neighbor of a query keypoint
Q, the structure will return a candidate set A(Q), which
includes the points that collide with @ across all the 36 di-
mensions. Then we search for Q’s nearest neighbor from the
set A(Q) by the OOS matching algorithm. This structure
has the merit that it is efficient and easy to implement with
simple bit operation.

With LIP-IS, basically two keypoints, which are similar
to each other, are more likely to collide in every dimension.
In contrast, the dissimilar keypoints have a relatively lower
chance of collision. Since each component of the PCA-SIFT
descriptors is theoretically Gaussian distributed, the prob-
ability that any two keypoints collide in a dimension can
be estimated. The probability that a keypoint @ will collide

()

with P in dimension 4, in its best (Pp) and worst (P.,) cases,
can be estimated as follows

N 7
P, = 2 ——— exp{——5Ydg; 3
) / o el s} da 3)
A 2
1 q;
P, = 2 — exp{——"Ydg; 4
/0 el o} da (4)

Then, the probability that a point will collide with @ in 36
dimensions can be expressed as

P;=P;° (5)

Notice that Py < 1 in general. This also implies that the
cardinality of A(Q) can be very small, i.e., Py X n, where n
is the total number of keypoints to be searched.

The probability of missing the nearest neighbor can also
be estimated. Suppose M is the maximum number of dimen-
sions that the nearest neighbor P and @ will not collide, the
probability in worst case is

M
o M M—i i M
Puis=» ()P '(1-Pu)' =1-Py

i=1

(6)

In theory, M can be estimated (and this value is much
smaller than 36), if we set a threshold to exclude keypoints
with low similarity from consideration. In our simulation,
when searching for a nearest neighbor from a 1000 keypoint
set, LIP-IS is often capable of filtering 99.5% of the points
without missing the real candidate for OOS matching.

5. ENTROPY OF MATCHING PATTERN

Intuitively, two matched keypoints indicate a pair of dupli-
cate sub-regions between two frames. Since NDK pairs share
the duplication of scenes, the upshot of keypoint match-
ing should form certain spatially coherent patterns that can
distinguish themselves from random matching. These pat-
terns could be one or several bunches of parallel or zoom-like

w
n 5
B A5
A (Xo,Yo) '8 ,
B
h 0.8
@
>
s Keyframe 1| A’ (X1.Y1) Keyframe 2
A :
———» Direction
AN Horizontal direction oo Line between
A’ (X1,y1) Keyframe 2 matching points

Figure 7: Computing orientation of matching lines.

matching lines across the sub-regions of the keypoints. Fig-
ure 6(a) shows the examples of matching patterns for NDK
(left) and non-NDK (middle and right) pairs. Basically, the
matching of non-NDK pairs often show random patterns
with matching lines being arbitrarily crossed across space.
The matching formats, in principle, provides vivid pattern
cues for the discrimination of NDK and non-NDK pairs. In
this section, we propose a novel measure, called pattern en-
tropy (PE), to measure the information for being an NDK
pair.

We capture the matching patterns of keyframes with two
histograms of matching orientations. Histograms G and G,
are constructed, respectively, by aligning two frames hori-
zontally and vertically, as shown in Figure 6(a) and Figure 7.
Depending on the alignment, a histogram is composed of the
quantized angles formed by the matching lines and horizon-
tal or vertical axis. Denote h as the height of the upper
keyframe (keyframe-1 in Figure 7), and the coordinates of
keypoint A in Keyframe-1 and keypoint A’ in Keyframe-2
as (wo,y0) and (x1,y1), respectively. The angle 6, of a line
formed by two matched keypoints is computed as follows

Ve e

Histogram G, is formed by computing 6, of lines and then
accumulating the count to the corresponding bins. His-
togram Gp is computed in a similar manner by the angle
0n. Denote w as the width of the left keyframe (keyframe-1
in Figure 7), the angle 0}, is computed as

0, = arccos(

V(T +w—0)% + (y1 — yo)g)

We quantize the histograms into 36 bins with a step of 5°
from 0° to 180°. Ideally, the parallel or nearly parallel lines
should fall in the same bin of a histogram. Histograms Gy,
and G, intuitively suggest the spatial coherency of match-
ing in the horizontal and vertical directions. Figures 6(b)
and 6(c) shows the histograms corresponding to an NDK
(left) and two non-NDK pairs (middle and right). The dis-
tributions of G, and G, depict the different partitions of
orientation for the same set of matched keypoints. For an
NDK pair, both histograms should be correlated. Specifi-
cally, whenever a peak in Gy is found, there should exist a
corresponding peak of the same keypoints in G,. To reveal
the mutual information between G, and G,, we use entropy
to measure the homogeneity of histogram patterns. For ab-
breviation, we call our measure Pattern Entropy (PE).

(8)

0, = arccos(

Denote N as the number of bins in a histogram, and de-
fine P = [p1,p2,...,pm] and Q = [q1,¢2,...,qn], Where
m < n < N. The notation p; (similarly for ¢;) is a non-
empty set of keypoint pairs that falls in a bin of histogram.
Physically, P corresponds to one of the histograms (G, or
G.) with less non-empty bins, while Q corresponds to the
other histogram. In principle, P is more compact than Q
since less bins are used to accommodate the matched key-
points. In pattern entropy, we measure the degree of points
in p; being distributed in Q, defined as

PE(QP)= 2 Y Entropy(g:,P) ©)
2; €Q

where

1 i N pj i N pj
Entropy(q:, P) = -3 Z la ﬁ'pJI x log la ﬂ.p]|
ogm L= lail lgi]

S= > laul=> Ipl

4 E€EQ p,EP

and |p;Ng;| is the cardinality of intersection between two sets
pi and g;. Basically, Entropy= [0, 1] measures the extent of
dispersing a set p; across the bins of another histogram of
the orthogonal direction. An entropy value of 0 indicates
the keypoints in p; are found exactly in another set ¢; of Q.
A value of 1 indicates that the keypoints in p; are evenly
distributed in some sets of Q. Overall, PE= [0,1]. The
extreme value of PE= 0 indicates a perfect coherent match
in both the horizontal and vertical directions. Conversely,
the value of PE= 1 basically hints a random match across
space. PE indeed bears two interesting facts. First, the
NDK and non-NDK pairs can be distinguished according
to the degree of matching coherency (and randomness) in
space formed by keypoints. Second, the measure fits the
symmetric property of NDK pairs due to the selection of Q
for testing the dispersion of ¢; with respect to P.

In Eqn (9), to restrict the random matches from being
considered, practically we should only consider p; with high
enough cardinality. For this purpose, a parameter = is set to
decide whether a set p; should participate in PE evaluation
(i.e., Eqn (9) is computed based upon all p; > 7). We will
demonstrate in our experiments that v is not sensitive as
long as its value is not small so as to eliminate noisy matches.
Finally, to determine whether two compared keyframes are
NDK, a gating threshold is set with PE= 0.5. Thus, in the
evaluation, keyframes with PE< 0.5 are declared as NDK
pairs.

6. TRANSITIVITY PROPAGATION

Based on the transitivity property, we propose to detect
NDK pairs within d days. The pairs with time span greater
than d are tracked by propagating the transitivity relation-
ship along the time dimension. Figure 8 illustrates an exam-
ple with d = 3. The black arrows mark the detected NDKs
in an exhaustive manner, while the dotted red arrows in-
dicate the propagated pairs. Both types of NDK pairs are
grouped to form a thread.

To calculate the speed-up due to transitivity propagation,
we denote T as the total number of days under investigation,
and p as the average number of keyframes per day. For an

Keyframe 1| «——— | Keyframe 2|«»|Keyframe 3| «—— |Keyframe 4

Mar.13th
Time (Days)

Mar.7th Mar8th Mar.oth Mar.'10th

<«—> Detected NDK pairs within d days

» 7 T~ Detected NDK pairs by transitivity propagation

Figure 8: Transitivity propagation.

exhaustive evaluation, the number of keyframe comparisons
is
T x (T +1) x p?
4
When propagation is used, the amount of comparisons is
2

dx (d+ 1)) o B

2 2

M2

= (d—|—1)><(2T—d)><I (11)

N, = (10)

Ny = (T—-d)yx(d+1)+

Note that the number of comparisons within the same day is
indeed w We approximate this value with %2 in both
equations. The amount of speed-up by comparing Eqn (10)
and Eqn (11) is
Tx(T+1)

(d+1) x (2T — d)
Let T = 30, the speed-up is approximately 5.34 times for
d = 2, and 2.82 times for d = 5.

Speed-up = (12)

7. RETRIEVAL EXPERIMENT

The aim of this section is to justify the choice of keypoint
detector and the performance of OOS matching and LIP-IS.
We use the data set given by [15] for evaluation. The data
set consists of 600 keyframes with 150 NDK pairs. Notice
that in this dataset each keyframe is near-duplicate with at
most one keyframe, and thus transitivity propagation is not
applicable for the experiments in this section.

We use all NDKs (300 keyframes) as queries for NDK
retrieval in the experiments. The retrieval performance is
evaluated with the probability of the successful top-k re-
trieval, defined as

R(k) = < (13)

where F. is the number of queries that find its duplicate in
the top-k list, and Fy, is the total number of queries. In the
retrieval experiments, the ranking is based on the cardinality
of keypoints being matched. In case the cardinality is the
same, the average similarity of matched keypoints is further
used.

Figure 9 compares the performance of the one-to-one sym-
metric (OOS) and many-to-one (M20) matching strategies,
against the baseline using color moment (CM). For OOS,
we further contrast the performance of two keypoint detec-
tors: Hessian-Affine and Difference of Gaussian (DoG). For
M20O mapping, we adopt the nearest neighbor search pro-
posed in [6]. The DoG+M20 strategy has also been used
by [5] for near-duplicate detection. For CM, three color mo-
ments (i.e., mean, standard deviation, skewness) are com-
puted. Basically each keyframe is divided in 5 x 5 grids, and

09 |

0.8

o7 /‘*’r —e—005(DoG)

06 —— 00S(Hessian Affine)
——M20(DoG)

0.5 —>—CM

Probability of Successful top k Retrieval

0.4

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
Topk

Figure 9: Comparison of keypoint detectors and
mapping strategies.

09

0.85

0.8 |

—o— LIP-IS+O0S
0.75 —=&— | SH+00S !
/ —&— 00S

0.7 =

Probability of Successful top k Retrieval

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 30
Topk

Figure 10: Comparison of LIP-IS and LSH.

the color moments are computed for each grid in Lab color
space. As shown in this figure, OOS outperforms M20 due
to its ability in pruning false alarms. The performance of
Hessian-Affine is slightly lower, but close to, the DoG detec-
tor. Considering the average number of keypoints detected
in a keyframe, however, Hessian-Affine (average of 600 key-
points) has advantage over DoG (average of 1,200 keypoints)
with a relatively smaller data size.

Figure 10 assesses the performance of two index struc-
tures: the proposed LIP-IS and the locality sensitive hash-
ing (LSH) used in [5]. There are two critical parameters
for LSH: K (number of random partition) and L (number
of times to tessellate a set). We optimize these parameters
with respect to the data set and set K = 108 and L = 2.
The experimental results justify the performance of LIP-IS
where it constantly outperforms LSH across all the tested
top-k retrieval. LIP-IS is about twelve times faster than pure
OO0S, however, is still slower than LSH for about two times.
Comparing our results with [15] on the same dataset, where
R(k) = 0.6 when kK = 1 and R(k) = 0.76 when k& = 30,
the performance of our proposed LIP-IS+OOS shows great
improvement.

8. DISCOVERY EXPERIMENT

This section justifies the performance of discovering NDK
pairs and threads, as well as the speed improvement due
to transitivity propagation. We present our empirical find-
ings separately in four parts. First, a baseline comparison
is given to justify the performance of pattern entropy with
brute-force keyframe comparison. Second, the effect of tran-
sitivity propagation is investigated by presenting the perfor-
mance gap between the results obtained by propagation and
brute-force comparison. Third, we assess the ability of pat-
tern entropy and transitivity propagation in discovering the

Table 1: Top five frequently reported news topics in
CNN and ABC channels during the whole month of

March 1998.

[Theme | # of Stories | # of NDK Pairs |
Basketball 78 73
Clinton Sexual Scandal 58 250
Finance 53 159
El nino 38 12
Arkansas school shooting 37 149

NDK threads of news videos. Finally, we investigate the
degree of speed improvement by varying the setting of time
span in transitivity propagation.

We use one month of TRECVID 2004 video corpus for
performance evaluation. The data covers 52 broadcasts of
CNN and ABC in March of 1998. Basically two pieces of
news, one from CNN and the other from ABC, were re-
ported each day. In total, there are 29 themes covering
805 news stories in the videos. One representative keyframe
(given by TRECVID) was extracted for each shot, resulting
in 7,006 keyframes. These keyframes form 24,538,515 can-
didate pairs. Among them, 3,388 NDK pairs were manually
identified by three assessors and finally became the ground-
truth dataset for experiments. The NDK pairs form 693
NDK threads, and involve a total of 1,953 keyframes. The
proportion of NDKs to all keyframes is approximately 28%.
Considering the number candidate pairs, the chance of suc-
cessfully finding a correct NDK pair in random, however, is
only 1.38e™%.

Table 1 lists the top five most frequently reported news
themes, along with their NDK pairs, in the ground-truth.
During the assessment, to avoid the potential ambiguity in
NDK pairs, two assessors were asked to mark the NDK pairs
separately. Another assessor was then invited to compare
the two sets of NDK pairs, compile and then group these
NDK pairs into the final ground-truth sets. Careful, al-
though subjective, judgment was required for the third as-
sessor whenever there was a conflict of an NDK pair.

For performance evaluation of NDK pair discovery, we use
Precision, Recall and F-measure, defined as

Number of NDK pairs correctly detected

Recall = Total Number of NDK pairs

(14)

Number of NDK pairs correctly detected
Number of detected NDK pairs

Precision =
(15)

Fomeasure — 2 x Precision x Recall (16)
" Precision + Recall

Recall measures the accuracy of returning ground-truth NDK
pairs, while precision assesses the ability of excluding false
positives. F-measure calculates the fitness of ground-truth
and detected NDK pairs by jointly considering recall and
precision.

8.1 Baseline Comparison

The baseline performance is grounded on brute-force (ex-
haustive) comparison. In other words, a total of 24, 538, 515
candidates pairs are exhaustively compared. A decision is
then made to gate whether a candidate belongs to an NDK
pair. We compare three approaches: pattern entropy (PE),

Table 2: Baseline performance comparison.

Pattern | Cardinality Color
Entropy | Threshold | Moment
Precision 0.892 0.829 0.151
Recall 0.779 0.696 0.151
| F-measure | 0.832 | 0.757 | 0.151 |

Table 3: Performance of NDK detection with pat-
tern entropy (7: minimum required cardinality in
each bin).

| [1=3[~r=4]7=5[~+=6]+=T7]
Precision 0.626 | 0.824 | 0.892 | 0.914 | 0.931
Recall 0.829 | 0.808 | 0.779 | 0.745 | 0.714

[F-measure | 0.713 | 0.816 | 0.832 | 0.821 | 0.81 |

cardinality threshold (CT), and color moment (CM). PE
and CT are based on keypoint matching using LIP-IS+0O0S
mapping, while CM is based on color feature. In CT, a
gating threshold (1), which is the cardinality of matched
keypoints, is set for determining NDK pairs. This strategy
is also used in [5]. In principle, a candidate should have a
large enough number of keypoints being matched in order to
claim the NDK identity. In CM, the similarity of candidate
pairs are compared and then ranked in descending order.
The top-k pairs are then declared as NDK pairs.

Table 2 shows the performance comparison of the three
approaches. For the proposed measure PE, the minimum
cardinality v is set to 5. For CT, n = 12, and for CM,
we show the results for top-3388 retrieved pairs (k is equal
to the number of ground-truth NDK pairs). Experimen-
tal results indicate that the proposed PE outperforms CT
across all performance measures. By taking into account the
spatial coherency of matching patterns between keypoints,
PE shows approximately a 10% improvement in term of F-
measure over CT. Note that by using keypoints, there are
approximately 300 NDK pairs with matching cardinality less
than 3. In other words, PE shows excellent recall perfor-
mance, and the majority of false negatives indeed belong
to pairs with very few matched keypoints. Both PE and
CT show significantly better performance than CM, which
demonstrates the advantage of keypoints over color features
for NDK detection.

To show the sensitivity of parameter setting, the perfor-
mance of the three approaches, by adjusting their parame-
ters (v, 1, k), are experimented. As shown in Table 3,
PE performs consistently satisfactory across all v > 4, and
achieves the best result at v = 5. It is not hard to under-
stand that precision improves while recall degrades, when

Table 4: Performance of NDK detection with cardi-
nality threshold 7.

| |77=8|77:10|77:12|77:16|77:18|
Precision 0.150 | 0.528 0.829 0.959 0.97
Recall 0.811 | 0.754 0.696 0.598 0.558

[F-measure | 0.253 | 0.621 | 0.757 | 0.736 | 0.708 |

Table 5: Performance comparison with transitivity propagation.

Pattern Entropy (v = 5) Cardinality Threshold (n = 12)

Span (day) | Precision | Recall | F-measure | Precision | Recall | F-measure
1 0.910 0.369 0.525 0.893 0.341 0.493
2 0.884 0.482 0.624 0.681 0.412 0.510
3 0.818 0.700 0.754 0.547 0.554 0.551
4 0.832 0.717 0.770 0.443 0.644 0.524
5 0.824 0.739 0.779 0.428 0.661 0.520
6 0.831 0.765 0.797 0.399 0.723 0.540
7 0.813 0.781 0.797 0.348 0.733 0.472

| Brute-force | 0.892] 0779 | 0832 [0.829 [0696 | 0.757]

& umson B ou

(a) False-alarm

(b) False-alarm

(c) Missed pair

Figure 11: False positives and true negative. (White
and red lines indicate the correct and false keypoint
matches, respectively.)

the value of v increases. The aim of setting - is to restrict
the random matches of keypoints from consideration. The
higher value 7 is, the better chance of finding an NDK pair,
although certain true positives may be accidentally missed
due to the restriction. Figure 11 shows a few examples of
false positives and true negatives by PE. In our experiments,
most false alarms are indeed due to the similar background
scene (see Figure 11(b)) and partly because of the editing ef-
fects. The missed pair in Figure 11(c) is due to sharp lighting
change and camera zoom, resulting in no matched keypoint
being found. Compared with PE, CT demonstrates a rela-
tively unstable performance as shown in Table 4. Similar to
PE, when the value of 1 becomes larger, precision improves
and approaches to 100% when n = 18. The improvement,
nevertheless, comes with the price of low recall. The result
of CT indeed indicates that when the cardinality of matched
keypoints of a candidate exceeds a certain value, the NDK
identity is almost certain. The difficulty of NDK detection,
however, should not be overlooked since the cardinality can
range from as few as three to as large as several hundreds for
true positives. As a consequence, the recall and precision of
CT can fluctuate significantly even with a small change of
threshold . CM, in contrast to PE and CT, performs poorly
with low recall values for all the tested top-k retrieval.

8.2 Tracking with Transitivity

Table 5 shows the performance of NDK detection with
transitivity propagation. We test the time span ranging
from one day to one week. In our data set, the brute-force
approach is basically equivalent to the time span of one
month. With transitivity propagation, NDK pairs within
a time span are exhaustively searched with LIP-IS+0OOS.
The detected NDK pairs are then transitively grown to form

Table 6: Performance of NDK thread discovery.
| [PE (y=5) [CT (n=12) |
0.0228 0.116
0.688 0.551

Cluster entropy
F-measure

more pairs. We compare two approaches, PE and CT, with
the best parameter setting found in the Section 8.1. As
indicated in Table 5, as the time span becomes larger, the
performance approaches to the brute-force one. The slope of
improvement, based on F-measure, is gradually less signifi-
cant when time span is equal or greater than four days. This
probably implies that the time span of four days is a good
choice when transitivity propagation is employed. With the
time span, the NDK pairs being correctly tracked with tran-
sitivity is 937. Meanwhile, 357 pairs are falsely generated.
For PE, compared to brute-force detection, the degradation
in F-measure is about 0.07 when day span is equal to four.

Comparing the performance of PE and CT, apparently
PE is significantly better than CT across all the tested time
spans. When day span is equal to three, PE already outper-
forms all the F-measure values of CT with reasonably good
recall and precision. The performance is indeed close to the
results of CT with brute-force detection. This again demon-
strates the performance stability of PE over CT when the
spatial coherency of matched keypoints are utilized.

8.3 Thread Discovery

To assess the performance of discovering NDK threads,
we compare the detected threads and ground-truth threads
with two measures: average cluster entropy and F-measure
[13]. Both measures are widely adopted in evaluating the
performance of clustering. Cluster entropy measures the
homogeneity of threads. The higher the homogeneity of a
thread, the lower the entropy, and vice versa. On the other
hand, F-measure assesses the quality of thread by intersect-
ing a detected thread with a ground-truth thread, which of-
fers the highest F-measure value. The higher the F-measure,
the better the performance. Table 6 shows the performance
of PE and CT. The proposed PE shows a significantly better
performance than CT in the brute-force approach.

8.4 Speed Efficiency

Currently, the average time for the comparison of one
keyframe pair with LIPS-IS+OOS is approximately 0.08 sec
on a Pentium-4 3G machine, including the time to upload
keyframes and save results. For one month of TRECVID

Table 7: Speed efficiency of NDK pair detection with transitivity propagation.

[Span (day) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | Brute-force |
Keyframe comparison | 2,463,203 | 4,001,612 | 5,453,222 | 6,894,733 | 8,225,922 | 9,484,087 | 10,711,597 | 24,538,515
Actual Speed (hour) 55 89 121 153 183 211 238 545

| Speed-Up [997 | 613 [450 [356 [298 | 259] 2.29 | 1 |

videos, the brute-force approach requires nearly one month 10. REFERENCES

(about 23 days) to compute all pair combination of keyframes. [1] C. Chang, J. Wang, C. Li, and G. Wiederhold. RIME:

Transitivity propagation is regarded as an important factor A replicated image detector for the world-wide web. In

to accelerate the computation. Table 7 lists the speed-up Multimedia Storage and Archiving Systems, 1998.

due to transitivity propagation in terms of the number of [2] S. F. Chang, W. Hsu, L. Kennedy, L. Xie,

keyframe comparisons, and the actual running time spent in A. Yanagawa, E. Zavesky, and D.-Q. Zhang. Columbia

obtaining the final results. When the time span is equal to university trecvid-2005 video search and high-level

one day, the speed-up is about ten times of that of the brute- feature extraction. In TRECVID, 2005.

force approach, which is considered as a significant boost in [3] P. Duygulu, J.-Y. Pan, and D. A. Forsyth. Towards

speed efficiency. In other words, instead of spending 23 days auto-documentary: Tracking the evolution of news

for an exhaustive comparison, we only need about 2.3 days stories. In ACM Multimedia Conference, pages

to complete the task. Nevertheless, to seek a balance be- 820-827, 2004.

tween efficiency and accuracy, a reasonable choice is the day [4] Y. Ke and R. Sukthankar. PCA-SIFT: A more

span of 3 or 4, which can end up with about 4.5 or 3.5 times distinctive representation for local image descriptors.

of speed-up. As a result, basically one needs approximately In CVPR, volume 2, pages 506-513, 2004.

5 days (d = 3) or 1 week (d = 4) to obtain a performance [5] Y. Ke, R. Suthankar, and L. Huston. Efficient

that is comparable to the brute-force evaluation. near-duplicate detection and sub-image retrieval. In

ACM Multimedia Conference, pages 869-876, 2004.
9. CONCL USl ON AND DI SCUSSl ON [6] D. LOWG letlHCtIVe lmage features from
scale-invariant keypoints. Int. Journal on Computer
We have presented our approach for fast detection and Vision, 60(2):91-110, 2004.

tracking of .NDK pairs ?Ll.ld. threads by utlllzlng the nature [7] Y. Meng, E. Chang, and B. Li. Enhancing dpf for

of symmetric and transitivity. In NDK detection, we have near-replica image recognition. In C'VPR, 2003.

proposed OOS and LIP-IS, which are shown to be reliable [8] K. Mikolajczyk and C. Schmid. An affine invariant

and fast. The measure of p@ttern entropy is further prgposed interest point detector. In ECCV, 2002.

to confirm the NDK identity by evaluating the spatial co- 91 K. Mikolaiczvk and C. Schmid. A ‘

herency of matching patterns due to keypoint mapping. In [9] K. Mi orajezyk and L. behimd. 4 periormance

NDK tracking, the feature of transitivity propagation is suc- evaluation of local descriptors. [EEE Trans. on PAMI,

& oLt .y bropagat, 27(10), 2005.

cessfully demonstrated, with its capability in linking NDKs AN .

rapidly without causing significant degradation in recall and [10] K. Mlkdajczyk’ T. Tuytelaars, C. S_Chmld’ .

precision. A. Zisserman, J. Matas, F: Schaffalitzky, T.. Kadir,
With propagation, nevertheless, false positives do appear and L. V. Gool. A comparison of afﬁne‘re‘zglon

whenever the property of transitivity is violated as indicated detectors. Int. Journal on Computer Vision,

in Figure 3(c). In our view, the false NDK pairs due to viola- 65(1/2):4?’772’ 2005.

tion can be very helpful for tasks like news story threading. (1] M. Schr}e%der and S. F. Chf.mg. A robust content

The explicit detection of transitivity violation is possible, based digital signature for 1mage authentication. In

although not considered in this paper. Considering that the Int. Conf. on Image Processing, 1996.

number of NDK pairs (to be further inspected for detecting [12] J. S. Seo, J. Haitsma, T. Kalker, and C. D. Yoo. A

violation) is far less than the number of candidate pairs, the robust image fingerprinting system using Randon

computational saving due to transitivity propagation can be transform. Signal Processing: Image Communication,

significant. In addition, with the employment of local key- 19:325-339, 2004.

point matching, some false positives are indeed caused by [13] M. Steinbach, G. Karypis, and V. Kumar. A

the captions and logos in the keyframes. Captions and lo- comparison of document clustering techniques. In

gos generate quite a number of keypoints, resulting in false KDD Workshop on Text Mining, 2000.

and noisy matches. We believe the performance of keypoint- [14] X. Wu, C.-W. Ngo, and Q. Li. Threading and

based detection and tracking approaches can be further im- autodocumenting news videos. Signal Processing

proved with certain pre-processing steps such as the removal Magazine, 23(2):59-68, Mar 2006.

of captions and logos prior to NDK detection. [15] D.-Q. Zhang and S.-F. Chang. Detecting image

near-duplicate by stochastic attributed relational
graph matching with learning. In ACM Multimedia

ACkn0W|edgementS Conference, pages 877-884, 2004.

The work described in this paper was fully supported by a [16] W. Zhao, Y. G. Jiang, and C. W. Ngo. Keypoint

grant from the Research Grants Council of the Hong Kong
Special Administrative Region, China (CityU 118905).

retrieval by keypoints: Can point-to-point matching
help? In Conf. on Image and Video Retrieval, 2006.

