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A B S T R A C T

Instance search is an interesting task as well as a challenging issue due to the lack of effective feature
representation. In this paper, an instance level feature representation built upon fully convolutional instance-
aware segmentation is proposed. The feature is ROI-pooled from the segmented instance region. So that
instances in various sizes and layouts are represented by deep features in uniform length. This representation
is further enhanced by the use of deformable ResNeXt blocks. Superior performance is observed in terms of its
distinctiveness and scalability on a challenging evaluation dataset built by ourselves. In addition, the proposed
enhancement on the network structure also shows superior performance on the instance segmentation task.
1. Introduction

With the proliferation of massive multimedia contents in our daily
life, it is desired that users are allowed to browse over relevant im-
ages/videos in which the specified visual instance (e.g., an object or a
landmark or a person) appears. This is known as instance search [1],
which arises from several application scenarios such as online prod-
uct search in the shopping website, video editing, and person re-
identification, etc.

Instance search is essentially different from conventional content-
based image retrieval (CBIR) [2,3] in several perspectives. First of all, in
instance search, the query is a visual object that is outlined (usually by
a bounding box) in an image. While in CBIR, the whole image is treated
as the query. Secondly, instance search requires the intended visual
objects to come from the same instance (while possibly under different
transformations) as the query [1]. In contrast, CBIR only requires the
returned contents to be visually similar as the query image no matter
whether they share the same origin. Moreover, instance search should
localize the target instance in the returned images.

There are basically two stages in visual content search system,
namely feature representation [4–16] and fast retrieval [17–20]. In the
whole process, feature representation plays the key role to the success
of the system. On one hand, features are required to be robust to various
image transformations, such as scaling, rotation and occlusions, motion
blur, etc. On the other hand, they should be distinctive enough so that
the retrieval quality does not suffer severe degradation as the scale of
the reference set grows.

In the existing solutions, instance search has been mainly addressed
by conventional approaches that are originally designed for image
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search [1,2], such as bag-of-visual words (BoVW) [4], RoI-BoVW [10],
VLAD [5] and FV [9]. All these approaches are built upon image local
features such as SIFT [21], RootSIFT [22], SURF [23]. Although local
features are much more distinctive than global features, they are still
unsuitable for instance search task. First of all, local features are not
robust to out-of-plane rotation and deformation, both of which are
widely observed in the real world. Moreover, it is not rare that very few
local features are extracted from transparent objects (e.g., bottles) or
objects with flat surface (e.g., balls). Additionally, it is not guaranteed
that the regions covered by local features are exactly from one instance.
As a result, the local features used to describe a target instance are
more or less contaminated by the contents from the background. For
this reason, similar as global features, isolated feature representation
for individual instances is not desirable.

Recently, pre-trained CNNs are gradually introduced to image re-
trieval tasks [13–16,24–26] due to their great success in visual object
classification tasks [27]. In the existing practices, image features are
typically extracted from the whole image or a series of local regions
with convolution or fully connected layers. Encouraging results are
observed on the landmark retrieval tasks in [14,15]. However, they are
unfeasible for instance representation since it is essentially a type of
global feature. The feature vector is comprised by a mixture of activa-
tions from a variety of latent instances in the image. Although recent
research [28,29] attempts to localize the representation to regional
level, exhaustive sliding search or feature aggregation is still inevitable.
Moreover, since such region level representation is given by a coarsely
restricted region, their improvement is still limited.

In this paper, an instance level feature representation is proposed,
which is based on an effective instance segmentation approach, namely
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Fig. 1. Framework of instance-level feature representation from convolutional activa-
tions of FCIS [30]. Processing flow with black arrows and dashed lines denote the
proposed modification and enhancement over FCIS.

fully convolutional instance-aware semantic segmentation (FCIS) [30].
Individual instances present in the image are detected and segmented
on pixel level by FCIS. This is essentially different from the approach
presented in [31], in which the segmentation only reaches to the
semantic category level. With the instance level segmentation, feature
representation of each instance is derived from the feature maps of
convolution layers using ROI pooling. So that instances in different sizes
and layouts are represented with the feature vectors of the same size. In
order to enhance the performance, two modifications have been made
on the FCIS network.

• The back-bone network of FCIS is replaced with a more powerful
ResNeXt-101 [32] without increasing extra FLOPs complexity or
the number of parameters;

• To enable the receptive field to be adaptive to the various shape
of potential objects, the plain layer in ResNeXt-101’s final stage
is replaced with deformable convolution [33].

To the best of our knowledge, this is the first piece of work that
visual instances are represented by features derived exactly from the
instance region. Moreover, due to the lack of publicly available testing
benchmark for instance search, a new dataset called Instance-160 is
constructed by harvesting test videos that are originally used for visual
object tracking evaluation.

2. Framework for instance search

2.1. Instance level feature representation

Fully convolutional instance-aware semantic segmentation (FCIS)
[30] is designed primarily for instance segmentation and detection.
The framework of FCIS is given as a sub-figure in Fig. 1, which is
inside the bounding box in green. In the network, the idea of ‘‘position-
sensitive score map’’ is adopted to perform segmentation and detection
simultaneously. These two sub-tasks share the same set of score maps
by assembling operation according to the region of interest (ROI). ROIs
are generated by region proposal network (RPN), which is added on
top of ‘‘conv4’’. The score maps output ‘‘inside’’ and ‘‘outside’’ scores
for the mask prediction and classification jointly. For details, readers
are referred to [30].

As seen from Fig. 1, there are three outputs from FCIS for one
image, namely the segmented instances (given as instance masks) and
the corresponding category label, along with the bounding box of each
instance. In order to extract the feature for each segmented instance,
another pipeline is introduced into FCIS framework. Namely, with the
generated bounding box, ROI pooling is performed on the feature maps
that are generated in the convolution stages. This feature extraction
pipeline is shown on the up-right of Fig. 1. Since the size of feature
2

map is different from the input image and varies from layer to layer,
bounding box of each instance is scaled accordingly to fit the size of the
feature map when we perform ROI pooling. The maximum activation
is extracted from the scaled ROI region as one dimension of the feature
representation. This ROI pooling is applied on all feature maps in the
same layer. As a consequence, the size of the output feature equals
to the number of the feature maps. Instances in different sizes and
layouts are represented with the same size of feature vectors. Since
the segmentation is precise and clean, this feature representation is on
instance level of real sense. All per-ROI computation is simple and fast
with a negligible cost, compared with forward pass. In recent research
on image captioning, the instance level feature is produced by Mask
R-CNN [34], which shares similar spirit as ours. However, different
from our framework, the features are fed to GCN-LSTM for caption
generation, which is less demanding on either the accuracy of instance
localization and distinctiveness of the feature representation.

Intuitively, convolution layers keep more abstract visual informa-
tion as network goes deeper. It is therefore widely believed that shal-
lower convolution layers are more suitable for low level feature rep-
resentation. In our framework, the ROI pooling could be possibly
applied on ‘‘conv2’’ to ‘‘conv5’’ and ‘‘conv’’ in Fig. 1. Namely, given
a segmented instance region, the segmented region is first projected
to the corresponding region on the feature maps of certain layer, e.g.
‘‘conv5’’. On every channel of feature map, max-pooling is performed
on the segmented region, and therefore, is reduced to a float number.
By concatenating all float numbers with respect to the order of n
channels, a feature vector of n dimensions is produced. As a result,
instances of various size and layouts are represented by a feature vector
with uniform size. The size of feature n is the same as the number
of channels in the layer. In the experiment, a comparative study is
made to show the distinctiveness of the feature extracted from these
layers. In addition, we also test the possibility of concatenating features
ROI-pooled from different stages. The concatenation is performed with
two, three and four stages of features. As will be revealed in the
experiment, concatenating features from ‘‘conv3’’ and ‘‘conv4’’ leads to
a good trade-off between feature distinctiveness and computation costs.
Features are l2-normalized before and after the concatenation.

2.2. Performance enhancement

In order to boost the performance of the proposed feature repre-
sentation, the FCIS is modified in two aspects. Namely, the ResNet-
101 [35], upon which FCIS is built, is replaced by more powerful
ResNeXt-101 [32]. In addition, to enable the network to be more robust
to severe shape variations, deformable convolution [33] is adopted in
the last three bottle-neck blocks of ResNeXt-101.

As pointed out in [30], the performance of ResNet [35] gets satu-
rated when its depth reaches to 152. To further improve the accuracy of
this back-bone network, ResNet-101 is replaced by ResNeXt-101 [32]
which corresponds to ‘‘conv1-4’’ and ‘‘conv-5’’ in Fig. 1. Compared to
ResNet, ResNeXt increases the cardinality of the building blocks. Fig. 2
show the difference between blocks of ResNet and ResNeXt. Cardinality
refers to the size of same-topology transformation aggregated in the
building block. The cardinality of building blocks in our case is set
to 32. This is to control the FLOPs complexity on the same level as
ResNet. Similar as ResNet-101, the weights of the model are initialized
from ImageNet [27] classification task. The layers (i.e., deformable
convolution layer and RPN) absent from the pre-trained model are
randomly initialized.

Visual instances usually undergo various irregular geometric trans-
formations in real scenario, which causes heavy deformations in their
appearances. Plain convolution modules in CNNs are inherently vulner-
able to such kind of transformations. Inspired from [33], deformable
convolutions are introduced to replace the plain convolution in the
last three bottle-neck blocks of ResNeXt-101 to alleviate this prob-
lem (illustrated in Fig. 2). Fig. 2(d) shows the sampling structure
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Fig. 2. Comparison between ResNet and ResNeXt blocks. In figure (b), ResNeXt’s
block [32] is embedded with deformable convolution [33] with cardinality of 32. The
size of filter and the number of filters are shown on each convolution layer. In the
enhanced instance feature design, structure in (b) is adopted. The last 3 bottle-neck
blocks of ResNeXt-101 are replaced by deformable convolution given in figure (d).

of deformable convolution in contrast to plain one (Fig. 2(c)). The
deformable convolution calculates a set of offsets for the ultimate
sampling locations to better adapt to the deformations of the instance.
The offsets are easily learned by applying a convolutional layer over
the same input feature maps. As is revealed later in the experiments,
both modifications proposed in this section boost the performance of
instance segmentation and instance search.

3. Evaluation dataset construction

Since the initiatives of instance search task in TRECVID [1], several
instance search approaches have been proposed one after another
over the past few years. However, the publicly available evaluation
benchmark is slow to occur. Approaches [28,29,31] aiming for in-
stance search are only evaluated on landmark datasets, typically Ox-
ford5k [36], Paris6k [37] and Holidays [37]. The evaluation does
not reflect the real challenges, such as motion blur, partial occlusion,
deformation and mutual object embedding, that instance search faces in
the general cases. Dataset maintained by TRECVID [1] avoids such kind
of disadvantages, whereas it is only open to TRECVID participants. In
this paper, a new dataset, namely Instance-160 is introduced. As visual
object tracking and instance search are two similar tasks, Instance-160
is built based on the video sequences used for visual object tracking
evaluation. On one hand, this avoids the painstaking efforts to annotate
the instances from new video sequences. On the other hand, videos
that are used for visual object tracking have been widely accepted
benchmarks. The variety of variations and transformations that could
happen on visual instances are incorporated.

In the object tracking, the tracking algorithm is required to track the
target object (selected on the first frame) in the rest of video frames.
In order to verify the robustness of the tracking algorithm, the test
videos are collected from different scenarios and cover a wide range of
objects. Most popular evaluation benchmarks are OTB2015 [38] and
ALOV++ [39]. They are collected from diverse circumstance including
illuminations, transparency, specularity, confusion with similar objects,
clutter, occlusion, severe deformation, motion blur and low contrast.
Since instance search arises from similar application scenarios as object
tracking, the same challenges are seen in instance search. Nevertheless,
it is worth noting that instance search is different from object tracking.
The latter assumes the visual object varies following the temporal or-
der. For this reason, the temporal information is more or less capitalized
in various object tracking algorithms. While this is not the case for
instance search. Moreover, the tracking algorithm is allowed to update
the feature representation from time to time as the tracking continues.
In contrast, feature representation, once has been designed, is fixed all
the way in instance search.

When we construct Instance-160, 58 and 102 sequences are selected
from 100 and 300 video sequences from OTB2015 and ALOV++ respec-
tively. The videos inside which the target instances are not covered
3

Fig. 3. Sample queries from Instance-160 and the number of true-positive distribution
in Instance-160.

by Microsoft COCO’s 80 categories are omitted. For each video, the
first frame in which the query instance is given by a bounding box is
extracted as the query side. For the rest, one frame is extracted for every
other 4 frames as the reference dataset. This results in 11,885 reference
images in total. Sample queries are seen in Fig. 3(a). The distribution
about the number of true-positives for all queries are shown in Fig. 3(b).
As shown in the figure, more than 90% of the queries have more than
20 true-positives for each.

4. Experiments

In this section, the proposed approach for instance search is evalu-
ated on the dataset introduced in Section 3. Additionally, in order to
verify the scalability of the presented approach, another 1 million im-
ages randomly crawled from Flickr are incorporated as distractors. The
performance evaluation is studied in comparison to several represen-
tative approaches. They are BoVW [4], BoVW+HE [37], R-MAC [28],
Deepvision [31] and CroW [29]. The last three are based on deep
features. For each CNN-based method, the network is initialized with
the default pre-trained model and configuration described in the corre-
sponding paper. For BoVW and BoVW+HE, the same visual vocabulary
sized of 65,536 are used. The binary signature in HE is set to 64 bits.
The performance is measured by mAP at top-k, where k varies from 10
to 100. This is due to the fact that more than 95% the queries have
more than 10 corresponding true-positives as shown in Fig. 3(b).

Under the same training protocol introduced in [30], the feasibility
of the proposed enhancement strategies is validated on PASCAL VOC
2012 [40]. Thereby, FCIS and FCIS in-planted with the proposed en-
hancement strategies are trained on Microsoft COCO 2014 [41]. All the
experiments are conducted on a workstation with four Nvidia Titan X
GPUs and one 3.20 GHz Intel CPU setup.

4.1. Configuration test on FCIS

Theoretically speaking, feature ROI-pooled from any layer could be
used to represent the detected instance. The distinctiveness of these
features varies from layer to layer. In the first experiment, the dis-
tinctiveness of instance-wise representation that are extracted from
different layers is studied. The feature representation with the best
distinctiveness (reflected by the highest mAP) is selected as the final
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Fig. 4. Performance of deep features extracted from different stages’ convolution layer,
ncluding experiments with feature concatenation.

eature representation. Additionally, we also investigate the possibility
f concatenating features from different layers.

According to our observation, the category label for the segmented
nstance from FCIS is in high accuracy. It is therefore could be adopted
or early pruning. Namely, the instance query only needs to compare
ith the candidate instances which share the same category label. Such
runing strategy speeds up the retrieval by two times without notable
rop in mAP. In the following experiments, pruning scheme is adopted
s default configuration for our approach.

In the first experiment, the distinctiveness of features from different
ayers of FCIS network is studied. We also investigate the performance
f hybrid features that combining features from two layers. Feature
erived from the ‘‘conv’’ (see Fig. 1) layer is given as comparison
aseline.

Fig. 4 summarizes the performance with features extracted from
ifferent stages. In the figure, mAP@10 and mAP@20 for all the con-
igurations are low since not all potential true-positives are considered
ue to the fact that 90% queries have more than 20 true-positives
see Fig. 3(b)). As expected, features derived from intermediate layers
erform better over feature from baseline (‘‘conv’’). Performance drops
hen features are derived from the shallow layers, such as ‘‘conv2’’
nd ‘‘conv3’’. This basically indicates that it is sub-optimal to employ
epresentations only kept with local visual patterns. As seen in the
igure, all three different combinations between features from different
ayers lead to better results. Concatenating features from all four layers
ives the best results, whereas with the highest dimensionality. As
een from the figure, concatenating features from ‘‘conv3’’ and ‘‘conv4’’
chieves similar performance but with only about a half of feature
imension. This observation is consistent even when we change the
ack-bone network from ResNet to ResNeXt as will be shown in the
ater experiment. It indicates that appearance of the instance is mostly
ncoded in these intermediate stages. As a result, we choose to concate-
ate only two stages of features in the later experiment for computation
fficiency.

.2. FCIS+XD versus FCIS

In this section, we are going to investigate the performance achieved
y two enhancement strategies proposed in Section 2.2. Since FCIS
s primarily designed for instance segmentation, the effectiveness of
he enhanced FCIS network is studied first on instance segmentation
ask. In the experiment, the performance of FCIS with ResNeXt back-
one network and deformable convolution layer are studied both as
eparate runs and as a combination. FCIS supported with deformable
onvolution is denoted as FCIS+D. FCIS supported with ResNeXt-101
s denoted as FCIS+X. FCIS+XD denotes that FCIS powered by both
4

nhancement strategies.
Table 1
Performance comparison (measured by mAP𝑟) of FCIS with its variants on PASCAL VOC
2012 [40].

Approach mAP𝑟@0.5 mAP𝑟@0.7

FCIS 0.657 0.521
FCIS+D 0.667 0.528
FCIS+X 0.658 0.526
FCIS+XD 0.675 0.539

Fig. 5. Performance of FCIS, FCIS+D, FCIS+D and FCIS+XD with the hybrid features
from different layers. The performance is measured by mAP at top-50 on Instance-160.

The performance evaluation is conducted on PASCAL VOC 2012
[40] and Microsoft COCO 2014 test-dev [41]. 𝑚𝐴𝑃 𝑟@𝑟 is adopted for
the evaluation. It basically calculates the mean of Average Precision
(AP) measured for a method for which the corresponding recall exceeds
r. Notice that it is essentially different from mAP that we use to evaluate
the instance search performance.

The performance of instance segmentation using FCIS and its vari-
ants is summarized in Tables 1 and 2. On the two datasets PASCAL VOC
2012 and Microsoft COCO 2014, both networks individually supported
by deformable convolution layers and ResNeXt bottle-neck blocks (de-
noted as FCIS+D and FCIS+X respectively) are able to achieve better
results in comparison to original FCIS architecture. When both of
these enhancement strategies are adopted (given as FCIS+XD), the best
segmentation accuracy is attained. As we verified on PASCAL VOC
2012 and Microsoft COCO 2014, the segmentation accuracy of FCIS
is relatively improved by 2.7% and 5.5% measured with mAP𝑟@0.5
respectively by FCIS+XD. Such results indicate that the enhancement
strategies proposed in Section 2.2 are all effective in boosting the
performance of instance segmentation task.

In addition, we further study the performance of the features de-
rived from FCIS+D, FCIS+X and FCIS+XD when they are adopted for
instance search task. Similar as FCIS, the other three networks are
trained on Microsoft COCO 2014 [41]. Fig. 5 presents the performance
of FCIS and its variants on Instance-160. mAPs at top-50 are presented.
Since hybrid features from different layers are always better than the
ones from single layer, the results of features derived from single layer
are omitted. As seen from the figure, hybrid features from ‘‘conv3 +
conv4’’ achieve the best result. This is consistent with the observation
on the results shown in Fig. 4. In the following experiments, hybrid fea-
ture from ‘‘conv3’’ and ‘‘conv4’’ is selected as the feature representation
for each detected instance.

Table 3 further shows the performance of FCIS and its enhancements
on Instance-160. For all different networks, the features are extracted
from ‘‘conv3’’ and ‘‘conv4’’. Due to the high accuracy on instance level
segmentation, superior performance is observed with FCIS+XD across
all the rankings. It outperforms FCIS by a constant 2–3% margin. In
the rest of our experiments, FCIS with ResNeXt back-bone network and
deformable convolution, namely FCIS+XD is selected as the standard

configuration for our approach.
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Table 2
Performance comparison (measured by mAP𝑟) of FCIS with its variants on Microsoft COCO 2014 test-dev [41].
Approach mAP𝑟@[0.5:0.95] mAP𝑟@0.5 mAP𝑟@[0.5:0.95]

(small)
mAP𝑟@[0.5:0.95]
(mid)

mAP𝑟@[0.5:0.95]
(large)

FCIS 0.292 0.495 0.071 0.313 0.500
FCIS+D 0.288 0.498 0.070 0.309 0.514
FCIS+X 0.296 0.513 0.081 0.319 0.515
FCIS+XD 0.303 0.522 0.082 0.326 0.528
Table 3
Performance (mAP) of FCIS, FCIS+D, FCIS+X and FCIS+XD with the hybrid features
of ‘‘conv3+conv4’’ on Instance-160.

Approach top-10 top-20 top-50 top-100 all

FCIS 0.1969 0.3378 0.5496 0.6339 0.6936

FCIS+D 0.2089 0.3517 0.5688 0.6535 0.7127
FCIS+X 0.2078 0.3522 0.5682 0.6537 0.7125
FCIS+XD 0.2109 0.3558 0.5747 0.6585 0.7237

Table 4
Performance (mAP) of FCIS+XD compared to five representative approaches in the
iterature.
Approach top-10 top-20 top-50 top-100 all

BoVW [4] 0.1061 0.1651 0.2483 0.2806 0.3141
BoVW+HE [37] 0.1483 0.2359 0.3553 0.4033 0.4375
R-MAC [28] 0.1014 0.1685 0.2680 0.3071 0.3577
CroW [29] 0.0733 0.1296 0.2391 0.2840 0.3375

DV-Res [31] 0.1763 0.2908 0.4609 0.5239 0.5790
DV-Vgg [31] 0.1939 0.3282 0.5413 0.6660 0.7306

FCIS+XD 0.2109 0.3558 0.5747 0.6585 0.7237

4.3. Comparison to state-of-the-art approaches

In this section, the performance of proposed FCIS+XD is studied in
comparison to five representative approaches in the literature. They
are two local feature based approaches BoVW [4] and BoVW+HE [37]
and three deep feature based approaches R-MAC [28], Deepvision [31]
(denoted as DV-Vgg) and CroW [29]. For Deepvision, the search is
carried out in two steps. In the first step, the top-ranked candidates are
produced by image level comparison. In the second step, instance level
search is carried out on the top-100 candidates. In order to make a more
air comparison between Deepvision and our approach, another run is
lso conducted for Deepvision. In this new run, back-bone network of
eepvision is replaced by ResNet-101, which becomes the same as FCIS.
he filtering scheme in the first step is disabled. This run is denoted as
V-Res.

Table 4 shows the performance from all approaches. As seen from
he table, DV-Vgg and FCIS+XD show considerably better performance
han the rest. BoVW+HE still shows competitive performance in com-
arison to deep feature approaches such as R-MAC and CroW. Although
he results from Deepvision are very close to FCIS+XD, they do not
eflect real behavior of Deepvision. In Instance-160, the videos are
rimarily collected from visual tracking evaluation. In many cases, the
uery instance shares similar background scene as the reference images.
o that true instances are retrieved by Deepvision due to their similar
ackground. For this reason, the image-wise feature representation in
eepvision still works seemingly well. However, the performance of
eepvision drops considerably when the target instances are cluttered

n different backgrounds. This will be confirmed by another experiment
fterwards. Another disadvantage for Deepvision lies in its low accu-
acy of generated instance bounding box. As shown in the table, the
AP of DV-Res is even lower than original FCIS (see Table 3) although

t is already powered by ResNet. This is mainly caused by its imprecise
eature representation of each instance. In contrast, FCIS+XD is able
o generate precise instance-level bounding-boxes owing to its precise
5

bject category-level classification and pixel-level mask prediction.
Table 5
Performance comparison (measured by mAP) of our method to Deepvision on 40 queries
in which heavy background variations are observed.

Approach top-10 top-20 top-50 top-100 all

DV-Vgg [31] 0.1925 0.2979 0.4642 0.5585 0.5894

FCIS 0.2521 0.4075 0.6094 0.6582 0.6975
FCIS+XD 0.2624 0.4301 0.6467 0.6975 0.7366

Fig. 6. Scalability test in comparison to five state-of-the-art approaches. The
performance is measured by mAP at top-50.

In order to further confirm our observation about Deepvision, 40
queries from Instance-160, in which severe background variations are
observed, are selected to verify its real behavior. Table 5 shows the per-
formance of FCIS, FCIS+XD and Deepvision on 40 queries. As observed
from the table, the performance of Deepvision drops considerably com-
pared to that of Table 4. As the background scenes from the instance
query and the reference images are dissimilar, the first round search in
Deepvision becomes ineffective since it is based on image-wise feature.
As the consequence, decent results are not expected from the re-ranking
stage since many true-positives are already missed in the first stage.
Another disadvantage of this approach is that one has to keep two types
of features. One is on image level, another is on region level, which
induce heavy computational overhead.

4.4. Scalability test

In this section, the scalability of the proposed feature representation
is studied. In the experiment, 1 million distractor images are added in
the reference set. The same processing pipeline is undertaken on this 1
million images. In the experiment, five representative approaches are
considered. For FCIS+XD, 1,648,654 instances are extracted from the
distractor images, each of which is represented as an 1,536-dimensional
feature vector.

As seen from Fig. 6, FCIS+XD shows the best scalability. It out-
performs Deepvision by a constant margin. As the computation cost
is high and the results from BoVW, BoVW+HE, R-MAC, CroW and
DV-Res are already much poorer than FCIS+XD and Deepvision (DV-
Vgg) with 100 K distractors, further verification on the whole 1 million
distractors is not carried out for these approaches. Fig. 7 shows six

instance search results produced by FCIS+XD. As shown in the figure,
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Fig. 7. Top-8 search results of six sample queries produced by FCIS+XD with 1 million distractor images (best viewed in color). The instances highlighted by a green bounding-box
in the first column are the query instances. The top-8 search results for each query are listed in the following columns of each row. The false-positives are outlined with bounding-box
in blue, while the true-positives are outlined by bounding-box in red.
all the top-8 results for each individual query are meaningful. The last
row in Fig. 7 shows one typical example where our approach fails. False
positive results are returned when the false instances demonstrating
similar appearance and scale as the query instance. Although a few
false-positive instances are returned, they indeed exhibit very close
appearance as the query.

5. Conclusion

We have presented a promising way of instance level feature repre-
sentation for instance search. This representation is built upon a fully
convolutional network that is originally used for instance segmentation.
With the precise instance segmentation, the feature is derived by ROI
pooling on the feature maps. To further boost its performance, two
enhancement strategies are proposed. The distinctiveness and scalabil-
ity of this feature have been comprehensively studied. As shown in
the experiment, it outperforms most of the representative approaches
in the literature. Considering the lack of publicly available evaluation
benchmark, a medium-scale dataset for instance search is introduced
by harvesting videos from object tracking benchmarks. Currently, the
types of instances that our approach could handle with are restricted
to Microsoft COCO-80 categories. Although it already covers variety of
instances that we encounter in the daily life, exploring more generic
instance segmentation model that works beyond 80 categories will be
our future research focus.
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