International Journal of Machine Learning and Cybernetics
https://doi.org/10.1007/5s13042-025-02782-y

ORIGINAL ARTICLE

®

Check for
updates

Patchlinear for single-step forecasting and anomaly detection
Min-Hua Zheng'? - Shi-Ying Lan' - Wan-Lei Zhao' - Jie Zhao?

Received: 12 November 2024 / Accepted: 12 August 2025
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025

Abstract

The trend forecasting and anomaly detection are the two fundamental tasks on a time series. They become increasingly
important due to the popularity of AIOps in various scenarios. In the last few decades, increasingly complicated models
have been proposed one after another for the trend forecasting and anomaly detection on the time series. Whereas, they
are either ineffective or infeasible as they are too complicated to be deployed in real scenarios, where the online train-
ing is barely feasible. In this paper, an effective online method both for single-step forecasting and anomaly detection is
proposed. In contrast to the existing methods that employ complicated models, the core component in our method is a
two-layer linear network. Although simple, it already outperforms many state-of-the-art methods, such as DLinear and
iTransformer on the single-step forecasting task. By the integration of distance significance which detects anomalies by
referring to the recent history of the time series, our method also shows considerably superior performance on the anomaly

detection task over most of the state-of-the-art methods such as FCVAE and AnomalyTransformer.
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1 Introduction

In the era of big data, a huge amount of time series data are
generated each day from various sources, such as finance, IT
security, medical, web services, social media, and geologi-
cal information systems. The processing and analysis over
such varieties of time series are mostly domain-specific. Let
X ={x1, -, 24+, 2} be a time series. There are two
basic processing requirements that are shared in common
by various applications. Firstly, it is expected that we can
forecast the future trend of X. Namely, we want to know the
future timestamps xy4y1...4+r given xj..; are known. Sec-
ondly, we would expect to know whether the current sta-
tus x; is normal. This is particularly important for the key
performance indicators (KPIs) time series. They basically
reflect the health of a system. The abrupt changes occur
when anything abnormal happens. These status undergone
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abrupt changes are called anomalies. The detection of these
anomalies is critical to maintaining the health of a system.
The timely alarm on these anomalies is expected to trigger
human intervention or manual diagnosis of the system. This
task is widely known as anomaly detection.

Time series forecasting and anomaly detection are the
fundamental tasks in the time series analysis, whereas
neither of them is trivial to address. There are two major
challenges. First of all, the time series are mixed with anom-
alous status in practice. It is laborious and error-prone to
annotate these anomalies manually. It is, therefore, unrealis-
tic to adopt a fully supervised method to perform the detec-
tion. The existence of anomalies impacts the performance of
forecasting as well. Moreover, due to the diversity of real-
world time series, it is impossible to build a general model
that performs well on all time series. Instead, the model
should be adaptive to different time series. Because of the
concept drift [47] in one time series, the model should run
online as well, which allows it to be adaptive to the trend
transition across different spans of one time series.

On the one hand, these two problems are old topics in
the sense that the early research on the forecasting issues
could be traced back to nearly one century ago [12]. In such
a long period, classic methods such as ARIMA [4], Kalman
Filter [14], and Holt-Winters [19] are proposed one after
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another. The implementations of these classic algorithms
are found in the recent packages Prophet [43] and Hawku-
lar [15]. On the other hand, new light has been shed on this
century-old subject due to the need of artificial intelligence
for IT operations (AIOps) [2, 10] in recent years.

Intuitively, anomaly detection can be addressed by sta-
tistical methods in either the time domain or frequency
domain [3, 36]. Namely, a status is viewed as abnormal if
it deviates from its mean so much that breaks the 3-o rule.
Unfortunately, such a solution is only effective for simple
scenarios. Moreover, due to the lack of annotations on the
anomalies, the fully supervised model either on forecasting
or anomaly detection is not preferred. As a consequence,
the mainstream methods perform the time series forecast-
ing or reconstruction by unsupervised training. Given the
forecasting or the reconstruction is sufficiently precise, the
anomaly detection can be as easy as checking the degree
of deviation of current status from the forecasted/recon-
structed status [41, 44]. Before the introduction of deep
neural networks, the representative forecasting methods
are ARIMA [4], Kalman Filter [14], and Holt-Winters [19].
However, the forecasting precision of these methods is usu-
ally very low. They are unreliable to be based on to fulfill
the detection. Although Prophet [43], recently developed by
Facebook, performs significantly better, it still faces similar
issues (as shown in Fig. 1b).

Due to the great success of deep neural networks in
various domains, more and more methods built upon com-
plicated deep models are proposed for both time series
forecasting and anomaly detection. The sequential models
such as recurrent neural network (RNN) [9] and long short-
term memory (LSTM) [16] are adopted for forecasting as
they are able to capture the sequential patterns across the
different timestamps. Although encouraging performance

is achieved [13], the forecasting results are not sufficiently
good for anomaly detection (shown in Fig. 1¢). In the recent
studies [32, 44, 59], the Transformer has been adopted in
time series forecasting and anomaly detection owing to its
powerful correlation capability. As shown from Fig. 1d, the
forecasting results from the Transformer-based methods fit
well to the normal status in the source sequence. However,
due to the high complexity of the model, it is hardly deploy-
able in real scenarios where the training resources are lim-
ited, while the time series to be monitored could be in the
hundreds.

In this paper, we propose a simple neural network to per-
form single-step forecasting and anomaly detection jointly.
Contrary to the decade-old trend in the literature, that pro-
poses increasingly complicated models with deep neural
network or Transformer [5, 32] for forecasting and anomaly
detection, time series forecasting and anomaly detection are
addressed by simple neural networks, which only consist of
two-layer linear neural network. Concretely, this network
predicts the next status with given history time series data,
and then the anomaly detection is carried out based on the
prediction. The merits of our method are at least threefold.

e A simple but effective network is proposed for single-
step forecasting. Its performance is on the same par as
state-of-the-art Transformer-based methods while it is
considerably efficient.

e Different from many existing works in the literature, the
anomaly detection module is integrated with the fore-
casting module, which provides a universal solution for
two fundamental tasks. Moreover, it shows the best per-
formance across most of the evaluation benchmarks for
the two tasks.

Fig. 1 A time series and the fore-
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e Furthermore, this method can be deployed online and
runs in real-time.

The remainder of this paper is organized as follows. In
Sect. 2, we review the related works about anomaly detec-
tion and time series forecasting. In Sect. 3.2, the two-layer
linear network designed for the single-step forecasting task
is introduced. In Sect. 3.3, the proposed anomaly detection
approach is presented. In Sect. 4, the effectiveness of our
approach is evaluated on four univariate time series datas-
ets. Finally, we conclude our paper in Sect. 5.

2 Related works
2.1 Time series forecasting

The aim of time series forecasting (TSF) is to predict the
status of future 7 timestamps when the history timestamps
x1...t are provided. The predictor is expected to capture the
seasonal patterns and trend, and to be robust to concept drift
in the meantime. The forecasting can be long-term when
T > 1 or single-step when 7 = 1. For the long-term fore-
casting task, the method is required to focus on the long-
term trend of the time series. While for the single-step
forecasting task, the method is required to capture the short-
term patterns in the time series. For this reason, the methods
designed for long-term forecasting are not necessarily effec-
tive on the single-step forecasting problem, and vice versa.

In the literature, we can see methods proposed either for
long-term forecasting or for single-step forecasting. Before
the emergence of deep models, single-step forecasting was
addressed mainly by methods from statistics or signal pro-
cessing, such as ARIMA [4], Kalman Filter [14], and Holt-
Winters [19]. The recent method Prophet [43] can be viewed
as the enhancement over these traditional methods, in which
the time series is decomposed into different components, and
the different components are fit by different models. In gen-
eral, these methods are computationally efficient, and they
are well-suited for performing forecasting on the stationary
time series. However, the time series produced in various
contexts are usually non-stationary. The correlation between
different timestamps is non-linear. Very poor performance
is observed on such time series by the traditional methods.
Before the emergence of deep neural network, evolution-
ary computing methods [39] like PSO [20], GA [17] and
its variants [6, 40] have been employed to address the time
series forecasting task and show considerable improvement
over the traditional methods. However, they also face some
notable drawbacks, such as high sensitivity to the hyperpa-
rameters and the initial conditions.

Owing to the high model complexity, the deep neural net-
works such as the LSTM [16] are expected to have the bet-
ter capability in capturing the temporal patterns. In the last
decade, there have been various forecasting methods built
upon LSTM [13]. In order to discover the most relevant fea-
ture to the prediction, the attention strategy has been inte-
grated into the RNN network [35]. However, these types of
methods are sensitive to anomalies and noises. In order to
boost the performance, ensemble learning is introduced into
forecasting [51, 54]. However, such methods induce signifi-
cantly higher computational costs.

Transformer [45] based models have shown great suc-
cess in natural language processing and computer vision.
Recently, several long-term forecasting methods based
on Transformer have been proposed. Namely, they are
Informer [59], Autoformer [48], Pyraformer [28], Tri-
former [8], FEDformer [60], and PatchTST [32]. Informer
in [59] alleviates the induced computational complexity by
Transformer model when applied in long-term forecasting.
The variants of transformer [28, 32, 48, 60] integrate extra
features into the model to either improve its performance or
efficiency. The common issue latent in these transformer [45]
based models is their vulnerability to the concept drift since
they cannot be deployed online. Recently, the long-term
forecasting methods based on Transformer have been chal-
lenged by a linear model [55]. As pointed out in the paper,
a simple linear network outperforms Transformer-based
methods such as Informer, Pyraformer, Autoformer, and
FEDformer on the long-term forecasting task. The experi-
ments in [32] confirm this discovery. In our paper, time
series forecasting is designed to forecast the next incom-
ing status, and is also used as the supporting block for the
anomaly detection.

2.2 Anomaly detection in time series

Because the single-step time series forecasting only predicts
the expected status for a timestamp ¢, the anomaly detection
can be achieved by checking the deviation of z; from the
predicted status x; at timestamp ¢. If z,; deviates from x,
too much, it is viewed as an anomaly. As a result, the afore-
mentioned forecasting methods are potentially anomaly
detection methods as well. In the following, brief reviews of
other types of methods are presented.

There are varieties of reconstruction-based methods in
the literature, nevertheless, they are out of the same motiva-
tion. Since the status of anomalies are far from normal and
have a rare occurrence, they will be reconstructed to normal
status. Similar to forecasting-based methods, z; is viewed
as an anomaly when it is far from the reconstructed status
Z¢. Traditionally, the reconstruction is fulfilled by PCA
or SVD. In recent works, generative adversarial network
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(GAN) [26, 57, 58], autoencoder (AE) [24], variational
autoencoder (VAE) [5, 34, 42], and transformer [50] are
widely used to represent the deep features, then check the
deviation to detect anomalies. The deep learning methods
outperform traditional methods considerably. However, due
to the high model complexity, transformer-based methods
are susceptible to overfitting. While GAN-based methods
are unstable due to the potential mode collapse during the
training. For these reasons, both transformer-based methods
and GAN-based methods require anomaly-free time series
for training, which are hard to collect in practice. Moreover,
there is no consideration about the online deployment of the
model in any of these methods. Namely, these methods can-
not be self-adaptive to the concept drift in the time series.

Apart from the forecasting-based and reconstruction-
based methods, there are also detection methods based other
theories. Dynamic spatial pyramid occupancy time-series
model (DSPOT) is built on extreme value theory [38].
By integrating spatial information with temporal dynam-
ics, DSPOT aims to detect anomalies and unusual patterns
that may occur in both space and time. This method is only
effective when the anomalies exhibit spatial and temporal
dependencies. Spectral residual (SR) [36] performs anom-
aly detection in the frequency domain. The source time
series is transformed into the frequency domain by the Fast
Fourier transform. The significant residuals in the frequency
domain correspond to the anomalies in the time domain. SR
is very efficient and is effective in detecting the anomalies
that deviates from normal significantly. It fails on the subtle
anomalies which cannot be revealed in the spectral residue.
Recently, the matrix profile (MP) [53] also has been adopted
for anomaly detection. The x; is viewed as an anomaly
when the distance of the subsequence containing x; to its
closest subsequence is abnormally larger than the average
distance. Although simple, MP shows promising detection
performance. In contrast to the methods based deep models,
both SR and MP can be deployed online. Similar to SR, MP
fails on the subtle anomalies.

In this paper, we address the time series single-step fore-
casting and anomaly detection jointly. In contrast to build-
ing complicated models in many existing works [5, 32], a
simple two-layer linear neural networks is adopted for the
single-step forecasting. Based on the forecasted value x; at
timestamp ¢, the judgment about whether z; is an anomaly
is made.

3 Proposed method
3.1 Overview of the framework

Given a time series X = {x1,--- , 24, -+ , o}, s € RY,
where d is the time status dimension. Specifically, X is a
univariate time series when d = 1, while X is a multivariate
time series when d > 1. In the forecasting task, we are going
to forecast x;41 given x;...4 are provided. In the the anom-
aly detection, we are going to judge whether z; is abnormal
given x;....—1 are provided. Our anomaly detection is based
on the output from forecasting, namely the forecasted sta-
tus Z,41 will be used for anomaly detection at timestamp
t + 1. For the convenience of our discussion, the anomaly
detection is performed on timestamp ¢ + 1 given x;..., are
known from now on. In practice, this is easy to achieve to
hold the forecasted status for the anomaly detection in the
next timestamp.

Inspired by the discovery from [55], we attempt to ful-
fill the single-step time series forecasting by a linear neural
networks. Thereafter, the anomaly detection is performed
based on the forecasted status x;1. The whole framework
for single-step forecasting and anomaly detection is shown
in Fig. 2. There are basically two processing pipelines in the
framework. On the bottom pipeline in the figure, the time
series are fed into a two-layer linear networks after a few
steps of preprocessing. The network will first make the fore-
casting for timestamp ¢ + 1. On the one hand, the forecasted
status ;1 is one of the outputs of our framework. On the
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Fig. 2 The framework of the PatchLinear model. The flow in blue is responsible for the time series forecasting. The result from forecasting is fed

into the flow in red for anomaly detection
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other hand, it is used as a weighted vote for the anomaly
detection. On the top pipeline, the time series are fed into
an unsupervised anomaly detection method. The anomaly
judgment is made based on the “distance significance” of
x¢41 from the historical status x;...;. The final judgment on
whether x4 is an anomaly is made by a weighted vote
from two pipelines.

3.2 Single-step time series forecasting

In the forecasting task, given a time series X, we are going to
forecast xy+1 when z;...; are provided. It is possible to adopt
transformer [32, 48, 59] to fulfill the forecasting. However,
linear neural network such as DLinear [55] is preferred for
at least two reasons. First of all, self-attention mechanism
in transformer makes it permutation-invariant. It is good
in language translation task, however it is harmful for time
series forecasting, in which the strict sequential order mat-
ters. Moreover, the quadratic time and memory complexity
makes self-attention mechanism an unaffordable operation
in this context which typically requires real-time perfor-
mance. In contrast, the light-weight linear neural network
already demonstrates excellent performance in long-term
time series forecasting task than many Transformer-based
methods [55]. Therefore, in our single-step time series fore-
casting task, the linear neural network is adopted.

The length of time series could be arbitrary, while
the size of neural network input is fixed. Following
the common practice in the literature, the time series
is cut into subsequences. Given the arrived ¢ time-
stamps of time series X, window size wi, and stride 1,
time series is transformed into a set of subsequences
o ={S1," Sk, St—w,+1}, 5k € R¥*. Please note
that Xis z-score normalized before it is cut into subsequences
. Then following the practice in [32], the subsequence is
further divided into patches to capture the patterns within
the small temporal window. Namely, Sy, is cut into overlap-
ping patches with window size p; and stride s. As a result, a
subsequence Sy, is patched as P, = {p1,-- -, Dj, " -, Pnum }»
where num = 2= + 1. As revealed later, such kind of
patching allows the network to extract detailed feature rep-
resentation from each subsequence. These features capture
local patterns or temporal characteristics within shorter time
frames. The patched subsequence is first normalized by a
reversible instance normalization, as proposed in previous
work [21], and then is fed into a two-layer fully connected
linear network for the single-step forecasting task. The net-
work is formulized in Eq. 1. Given Z;1; is the forecasted
status at timestamp ¢ + 1, the loss of the forecasting net-
work can be simply defined by mean squared error (MSE),
which is given by Eq. 2. The whole forecasting network is
shown inside the dashed bounding-box in Fig. 2.

Tr1 = Wox (Flatten(Wixp; + b)) + be, j € [1,num] (1
n
Loss = » (Z141 — e11)” 2
t=1

As revealed later in the experiments, the forecasting perfor-
mance of this simple network is on the same par as the state-
of-the-art method PatchTST in most of the cases. Moreover,
due to the simplicity of our method, it is cheap to be trained
and deployed as an online model, which is able to adapt to
the concept drift easily.

Discussion In the above network, a sliding window is
adopted when we cut subsequence Sj into overlapping
patches. Thereafter, the patches are fed into a two-layer lin-
ear network. Since the patches are produced from a subse-
quence with a sliding window, the first layer is comparable
to applying a 1D-convolution over Sk. It therefore captures
the correlation between timestamps within a short tempo-
ral range. The second linear layer performs linear mapping
between the output of the first layer and the ;1. Compared
to the first layer, it covers the whole subsequence Sy. It,
therefore, has a wider receptive field. As a result, it is able to
mine the correlation between timestamps in a much wider
range. As pointed out in [27], most of the local timestamps
are linear dependent, it is sufficient to fulfill the single-step
prediction by a layered linear-mapping [55].

Given the single-step time series forecasting is suffi-
ciently precise, it is easy to judge whether the status on a
timestamp ;11 is anomalous by referring to the forecasted
value for this timestamp. In the next section, we are going to
show how the forecasting network presented in this section
serves as a major component for the anomaly detection task
in our overall framework.

3.3 Anomaly detection

In the anomaly detection task, we are going to judge
whether z; is abnormal when z;...; are known. Our anomaly
detection is based on the output from forecasting, namely
the predicted status z;4; will be used for anomaly detec-
tion at timestamp ¢t + 1. So there is one timestamp delay
between the forecasting task and the detection task. For the
convenience of our discussion, the anomaly detection is per-
formed on timestamp ¢ + 1 given z;...; are known from now
on. In practice, it is straightforward to save forecasted status
until next timestamp arrives for anomaly detection task.
Thereafter, the anomaly detection is performed based
on the predicted status ;1. The whole framework con-
sists of single-step forecasting and anomaly detection, as
shown in Fig. 2. There are two processing pipelines in the
framework. On the bottom pipeline in the figure, z;4; is
obtained by the single-step forecasting module. On the one
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hand, the forecasted status x;4; serves as one of the out-
puts of our framework, namely single-step forecasting. On
the other hand, the deviation of x;,; from the forecasted
status ;41 is used for the downstream anomaly detection
task. Herein, we adopt the principle that is shared by predic-
tion-based anomaly detection methods “the anomalies are
unpredictable” [1].

In order to boost the detection performance, another
method based on the proposed distance significance is inte-
grated into the framework, which is shown as the pipeline
on the top part in Fig. 2. In the rest of this section, we are
going to present two integrated detection methods in detail.

3.3.1 Moving threshold

In general, “the anomalies are unpredictable”, the forecast-
ing component introduced in the previous section will only
forecast the normal status of timestamp ¢ + 1. It is straight-
forward to judge whether status x;y; is anomalous by
referring to the forecasted status ;1. We select the mean
absolute error (MAE) to measure the deviation as anom-
aly score. Then, the key issue is to decide to what degree
that x,y; deviates from Z,;; that it should be viewed as
an anomaly. Intuitively, one could set a fixed threshold to
dictate whether x; 1 is an anomaly. Several anomaly detec-
tion methods compute an anomaly threshold after they get
all anomaly scores for a dataset [44, 46]. However, this is
unrealistic in practice. First of all, only the status before
timestamp ¢ + 1 are known. One cannot estimate the thresh-
old based on future status. On the other hand, one cannot
simply fix the threshold due to the concept drift. To address
this issue, we propose to update this threshold dynamically.

Given p and o are the mean and standard deviation of a
subsequence respectively, the threshold for the current sta-
tus is defined as

Tt-‘rl =u+ k'o', (3)

where k is a hyper-parameter. In Eq. 3, ;x and o are esti-
mated from a subsequence. At different stages, ¢ and o are
estimated in different ways. In principle, they are estimated
from the subsequence that is close to timestamp ¢ + 1. At
the initial stage, due to the insufficient number of time sta-
tus data for prediction and detection, we have to rely on the
1 and o computed during the training stage. Meanwhile,
in order to be adaptive to continuously arriving new sta-
tus, T34 is set to be the maximum among the one esti-
mated from the training sequence and the one estimated
from the first 30 timestamps from the current subsequence.
When sufficient number of new status arrive during the test
stage, the deviations of the status from its forecasted sta-
tus at the recent c,, timestamps are cached. The © and o
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are, therefore, estimated from these cached statuses. At this
stage, T} is set to be the maximum among the estimated
from the cache and the first 30 timestamps estimated from
the current subsequence.

Figure 3d shows the moving threshold derived from
arrived time subsequence. Due to the good forecasting per-
formance (as shown in Fig. 3¢), most of the anomalies can
be easily identified by the moving threshold.

The above anomaly detection based on MAE is effective
in detecting anomalies on a stationary time series. Never-
theless, it fails on the non-stationary time series. A typical
scenario is given in Fig. 3d. This strategy fails to detect the
first anomaly on the time series, where the anomaly is insig-
nificant compared to the variations across the arrived status
(status on the left of the first anomaly). To address this issue,
another method called distance significance is proposed,
which is detailed in the next section.

3.3.2 Distance significance

In the above method, anomaly detection on a timestamp is
achieved by checking the deviation of real status from the
forecasted status. Nevertheless, anomaly detection based
solely on the single-step forecasting cannot necessarily lead
to good performance. On the one hand, a status is viewed as
anomaly usually by referring to its neighboring status. All
these consecutive status could be in small value when they
are in the valley of a curve. On the other hand, the mov-
ing threshold is largely the average of recent status, which
could be large due to the peaks in the curve or the poten-
tial anomalies. For this reason, the anomalies in small value
could be overlooked. Such issues are illustrated in Fig. 3d.
To address these issues, we integrate the distance signifi-
cance (DS) into the detection model, which contrasts the
difference of a status against the best matched subsequence
in the history. This strategy has been widely adopted in vari-
ous fields. For instance, the meteorologist judges whether
the temperature of a certain day is abnormal by referring
to the historical temperature data of that day in history. In
particular, he will compare with the year when the tem-
perature data are the best-match in a small period before
that day. Based on this idea, our second anomaly detection
strategy is conceived. There are basically two steps in this
strategy. Namely, we first search for the best-match subse-
quence from the observed time series. Then, we measure
the significance of the difference between the current status
and the best-matched subsequence. If they are significantly
different, current status is deemed as an anomaly.

Given a time series X, the subsequence to be judged
Xt—m+1,m 1s defined as a continuous interval of
length m starting from the position ¢ —m+1, ie,

Xt7m+1,m = {"Et,erl, Lt—m+42y - - ,$t+1}. Similar to the
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Fig. 3 The illustration of anomaly detection by different modules in PatchLinear. d Shows the anomaly detection based on the forecasting results

in figure (c). e Shows the anomaly detection based on distance significance

forecasting task, the time series X is cut into subsequences
with a sliding window. The step size of the sliding window
is / and the window size is m. Given a query subsequence
Xi,m, its Euclidean distance to another subsequence X ,,
is computed by

(X Xgm) = V| Ko — 1) = (Kjom — DI, @)

where p; and p; are the mean of X ,, and X ,, respec-
tively. Following the way of matrix profile [61], we can first
rewrite Eq. 4 into

A( Xy Xjm) = \/m(o—,? +02) = 2((Xim, Xjm) — mptapsy). )

This distance computation between X; ,,, and X ,,, can be
sped up by the following Eq. 6.
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(Xims Xjm) = (Xic1,m, Xj—1,m) — Tic1Zj—1 + Tigm—1Zj4m—1, (6)

where 05, 0; in Eq. 5 are the standard deviations of two
subsequences.

In order to avoid trivial matches [31], an exclusion zone
of 7 before and after the subsequence in the time series is
ignored. Given subsequence X ,, is the best-matched for
the current sequence X ,,, the timestamp j will be recorded
for subsequence X; ,,. In order to speed up the matching
procedure, we only keep the last c,, inner products, which
means we only match the most recent c,, subsequences.
In this way, the time complexity of the distance profile is
reduced to O(cy,-m).

Once we find the best-matching subsequence for the cur-
rent subsequence, we should proceed to evaluating the dif-
ference between them such that to judge whether the last
timestamp (Z;4m—1) in X; , is abnormal. This timestamp
is exactly x; that is aforementioned.! Given subsequence
Xi,m and its best-matching subsequence X ,,,, we aim to
judge whether the last timestamp in subsequence X,
namely x;.,,—1 is an anomaly. To achieve that, the distance
significance on timestamp % + m — 1 is defined as

o (@ime1 = 1) = @gmes = 1))
L (@i = i) = (@ — )

, 7)

where [i; and fi; are the means of the last / status of X; ,,
and X, respectively. Equation 7 measures the signifi-
cance that the distance between last status x;4.,,—1 and
Zj+m—1 in contrast to a strip of distance between X .,
and X ,,. As shown in Fig. 3e, we can see that if ;1
is abnormal, 7; is unexpectedly high, and it is invariant to
amplitude changes since it is a distance ratio relative to its
best-matched subsequence. In Eq. 7, / is a parameter and is
set to 30, which is the same as the MAE score window. In
practice, there may be more than one anomaly within X ,,.
As a result, / is recommended to be smaller than m when m
is a large status, otherwise status 7; remains small even if an
anomaly occurs. Once the distance significance ratio 7; is
ready, an anomaly is detected when its 7; is above a hyper-
parameter threshold 1 € (0, 1).

Table 1 The number of parameters across different layers in our net-
work under two settings “hourly” and “minutely”

Granularity Input w, Patching Layer-1  Layer-2 #Para.

Hourly 24 p;=12,5=4 12 = 64 (4x64) 1344
— 1

Minutely 120 p=12,5=4 12—64  (28x64) 4416
—1

! For the convenience of presentation, we refer T¢4+1 as Tijym—1
across this section.

@ Springer

Nevertheless, it is possible there are anomalies in the
best-match subsequence. In this case, it is no longer mean-
ingful to treat the best-match subsequence as the reliable
reference for the detection. To address this issue, the median
absolute deviation (MAD) [25] is adopted to detect anom-
alies on a given subsequence. Similar to the distance sig-
nificance, a status of a timestamp x;,,—1 is viewed as an
anomaly when the D, ,,_1 in Eq. 8 is higher than a fixed
threshold 6 € (0, 1).

0.674 * |(zi4m—1 — Median(X; ,,,))| g
Median([(Xs,m — Median(X, ))&

Di+m—1 -

where function Median(-) returns median of an input
subsequence. The factor 0.674 is an empirical constant
from [25]. MAD judges whether the last timestamp in the
subsequence is an anomaly based on the properties of the
subsequence itself when the best-match subsequence is not
reliable. It checks whether the last timestamp in the current
subsequence deviates significantly from the median of the
subsequence. Relying on the median instead of the com-
monly used mean, it becomes robust to extremely high or
low status.

The complete detection framework is shown in Fig. 2. The
first detection pipeline relies on the output from the single-
step forecasting, which has been elaborated in Sect. 3.3.1.
The second pipeline (pipeline on the top) relies on distance
significance and median absolute deviation. Given a sta-
tus x;41, it is viewed as an anomaly when it is detected by
either of them. The source codes of our paper are available
at https://github.com/wlzhao22/PatchLinear.

3.4 Complexity analysis

There are two pipelines in our anomaly detection frame-
work. Namely, one pipeline is a two-layer linear network.
Another essentially performs subsequence matching
between the current subsequence and the historical ones.
The complexity of the first pipeline is mainly determined by
the scale of network parameters. The number of parameters
in different layers is shown in Table 1. For time series in dif-
ferent granularities, two configurations are used. As shown
from the table, the number of parameters is less than 5K,
which is quite light-weight in contrast to 100K involved in
the Transformer-based method [32].

For the pipeline of anomaly detection based on distance
significance, the most intensive operation is the distance
calculation between subsequences. Given c,, and m are
the cache length of historical series and the window size
of current subsequence respectively, the time complexity
is O(cy - m). As a result, the time complexity of anomaly
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detection is O(t - ¢, - m) when the length of a time series
ist.

4 Experiments
4.1 Datasets and evaluation protocol

In this section, the effectiveness of our method in single-
step forecasting and anomaly detection is evaluated on
four benchmarks, KPI [2], Yahoo [52], NAB [23], and
MSLU [18]. The brief information about these four data-
sets is summarized in Table 2. The KPI dataset is released
by the AIOps Challenge Competition. The KPIs series are
collected from various Internet companies, such as Sogou,
eBay, and Alibaba. All the time series are minute-level, and
the anomalies are annotated. The Yahoo dataset is released
by Yahoo Lab. The dataset consists of real-world and syn-
thetic time series. The real-world series are collected from
the real traffic of Yahoo services. Both the real and synthetic
series are hour-level. NAB is an open dataset released by
Numenta. Following previous work [46], we apply 10 uni-
variate time series from Twitter in this dataset. MSLU is
derived from the MSL dataset, a multivariate benchmark
for time series anomaly detection released by NASA, which
recorded the status of the Mars rover. The first dimension
of MSL is adopted in our experiment as a univariate time
series for evaluation. For all of the datasets, each time series
is evenly divided into two parts. The first part is used for
training, and the second part is for test. For the subsequence
used for training, the first 70% of timestamps are used for
training, while the rear 30% of timestamps are used for
validation.

In the single-step forecasting task, following the prac-
tice in [32], mean squared error (MSE) and mean absolute
error (MAE) are adopted in the evaluation. The lower MSE
and MAE, the better the forecasting performance. In the
anomaly detection task, following the convention in the lit-
erature [36, 49], precision, recall, and F1-score are used in
our evaluation. Usually, operators are more concerned about
whether an anomaly can be successfully detected within an
acceptable delay in real practice. Therefore, following the
evaluation metrics in previous works and competition [2,
36, 49], the detection is viewed as a true-positive sample if
an anomaly is detected in ¢ timestamps after the anomaly is
generated. Following the previous practice in [2, 5, 46], the

Table 2 The brief statistics on the four evaluation datasets

Dataset #Series  #Timestamps #Anomalies Granularity
KPI 29 5,922,913 134,114 (2.26%) Minute
Yahoo 367 572,966 3,896 (0.68%) Hour
NAB 10 158,631 15,689 (9.89%)  Minute
MSLU 18 78,644 6,622 (8.42%) Minute

hyper-parameter ¢ is 7 in KPI, 3 in Yahoo, 150 in NAB, and
60 in MSLU, respectively. The higher the precision, recall,
and F1 score, the better the detection performance. In addi-
tion, the average time cost of forecasting every timestamp
by different methods are reported.

4.2 Experiment setting

In this section, we set two versions of parameters for datas-
ets with different time granularities. For minute-level datas-
ets, matching window m, sequence length w;, and threshold
7 are experimentally set to 7,440, 120 and 0.4, respectively.
Specifically, due to the short length of the MSLU dataset,
the matching window is set to 360. For hour-level datasets,
m, wy and n are 48, 24 and 0.7, respectively. The cached
window c¢,,, MAD threshold # and score window / are set
to 10 days, 0.5 and 30 for all datasets, respectively. All the
experiments are performed on a PC with an Intel 17-8700
CPU @ 3.2GHz (12 cores) and 16GB of memory.

4.3 Performance on single-step forecasting

The performance of our method is compared with the rep-
resentative time series forecasting and anomaly detection
methods in the literature. For forecasting task, the con-
ventional approaches ARIMA [4] and Prophet [43], clas-
sic methods based on neural network such as LSTM [16],
GRU [7], and recent methods PAD [5], DLinear [55],
iTransformer [29] and PatchTST [32] are also considered.
ARIMA and Prophet are the classic methods for time series
forecasting tasks. LSTM and GRU are the classic neural-
networks used in time series forecasting task. The PAD is
an integration of VAE and LSTM that is able to perform
the forecasting task and anomaly detection task on the time
series. DLinear, iTransformer, and PatchTST are recently
developed and show superior performance on time series
forecasting tasks.

The performance of the single-step forecasting task
from our method and state-of-the-art methods is shown in
Table 3. The performance from the classic methods such as
ARIMA and Prophet is pretty poor across all the datasets
since they are unable to capture the non-linear correlation
between timestamps. Deep models such as GRU, LSTM,
and PAD demonstrate satisfactory performance on KPI
dataset, whereas perform poorly on the rest due to their
vulnerability to the noises and anomalies. iTransformer
performs well on the Yahoo dataset but gets unsatisfactory
results on the KPI dataset, indicating that the method is only
good at periodic time series. The result of DLinear shows
potential effectiveness of linear network for single-step
forecasting task and has same speed compared to classic
statistical method. Thanks to the introduction of patching

@ Springer



International Journal of Machine Learning and Cybernetics

Table 3 The single-step forecasting performance evaluation by MSE and MAE on KPI, Yahoo, NAB, and MSLU datasets. Additionally, the aver-

age inference time for each stamp is reported for each method

Method KPI Yahoo
MSE MAE T™ (ms) MSE MAE TM (ms)
ARIMA 0.8488 0.8735 0.013 21.3454 1.3756 0.014
Prophet 1.5643 0.8464 0.237 20.9178 0.9897 0.307
GRU 0.2920 0.2098 0.308 20.5051 1.1603 0.300
LSTM 0.2683 0.2026 0.313 20.7485 1.2312 0.312
PAD 0.3883 0.2541 1.024 19.6496 0.9660 0.967
DLinear 0.2058 0.1806 0.115 5.4978 0.3675 0.115
PatchTST 0.1801 0.1647 1.530 5.9267 0.3130 1.177
iTransformer 0.3389 0.2552 1.192 4.3630 0.3294 1.201
PatchLinear 0.1747 0.1654 0.207 4.6613 0.3203 0.203
Improvement 3.0% —0.4% - —6.8% —2.3% -
Method NAB MSLU
MSE MAE T™ (ms) MSE MAE TM (ms)

ARIMA 1.7561 0.5408 0.024 3.1339 1.1271 0.007
Prophet 2.4999 0.8381 0.428 6.9587 1.7401 0.108
GRU 1.6370 0.5801 0.552 1.7042 0.6662 0.157
LSTM 1.5428 0.5091 0.560 1.9287 0.7227 0.155
PAD 2.8685 0.8314 1.794 1.7980 0.7185 0.512
DLinear 1.5941 0.4806 0.221 1.3342 0.6343 0.061
PatchTST 1.3170 0.4107 2.708 0.7206 0.3059 0.743
iTransformer 1.4327 0.4295 2.263 1.2592 0.5604 0.613
PatchLinear 1.3878 0.4150 0.394 0.5807 0.2745 0.106
Improvement —5.4% -1.0% - 24.1% 11.4% -

The best performance is marked in bold, while the second best performance is underlined

scheme, the forecasting accuracy of our method outper-
forms DLinear consistently. PatchTST and our method show
the best performance across different datasets. Our method
achieves the best performance on 3/8 measurements. For the
remaining 5/8 measurements, it only shows slightly infe-
rior performance than the much more complicated models
PatchTST or iTransformer. When it comes to the forecast-
ing efficiency, our single-step forecasting component shows
around 7 times faster speed over PatchTST while achieving
similar forecasting accuracy.

4.4 Performance on anomaly detection

For the anomaly detection task, our method is evalu-
ated in comparison to the conventional methods such as
DSPOT [38] and SR [36], and methods based on unsu-
pervised networks VAE [22], LSTMAD ([30], PAD [5],
TFAD [56], and FCVAE [46]. In addition, our method is
also compared with RNN-based method LSTMAD [30]
and attention-based method AnomalyTransformer [50].
DSPOT detects the anomalies based on the extreme value
theory. SR transforms the source series into the frequency
domain. The anomalies are reflected as the residuals in the
frequency domain. Methods VAE, PAD, and FCVAE are
reconstruction-based methods. The anomalies are detected
when the discrepancy is significant between the original
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status and the reconstructed normal status. LSTMAD [30] is
comprised by several LSTM layers. Similar as other recon-
struction-based method, the anomaly is detected by check-
ing the discrepancy between the forecasted status and the
real status. AnomalyTransformer [50] adopts the attention
strategies in the time series reconstruction. The anomaly
detection is achieved by referring to the reconstructed status
as well. TFAD extracts feature vectors for the subsequence
(to be considered) and the context subsequence where the
subsequence is located in both time and frequency domain.
The anomalies are detected based on the distance of their
corresponding feature vectors between the subsequence and
context subsequence.

The detection performance on four datasets of anomaly
detection task is shown in Table 4. The methods are roughly
divided into three groups according to their overall perfor-
mance. Traditional methods DSPOT, and SR show poor
performance, and their performance fluctuates significantly
across different datasets. These methods fail when the
anomalies are insignificant. Methods based on the classic
neural networks such as VAE, PAD, LSTMAD and TFAD
outperform the traditional methods. However, their perfor-
mance still fluctuates considerably across different datasets.
Compared to PatchLinear, they are either unable to fully
capture the correlation between timestamps or are too sensi-
tive to the noises and anomalies. Overall, our method shows
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Table 4 The anomaly detection performance evaluation by precision, recall, and F1-score of our method and state-of-the-art approaches on KPI,

Yahoo, NAB, and MSLU datasets

Method KPI Yahoo

Pre. Rec. F1 Pre. Rec. F1
DSPOT 0.623 0.447 *0.521 0.241 0.458 *0.316
SR 0.647 0.598 *0.622 0.451 0.747 *0.563
VAE 0.725 0.648 *0.685 0.773 0.549 *0.642
PAD 0.839 0.660 *0.739 0.837 0.688 *0.755
LSTMAD 0.786 0.590 0.674 0.413 0.198 0.268
AnomalyTransformer 0.622 0.240 +0.346 0.054 0.020 +0.029
TFAD 0.650 0.714 +0.680 0.883 0.734 +0.802
FCVAE 0.906 0.772 +0.835 0.897 0.792 +0.842
PatchLinear 0.858 0.822 0.840 0.899 0.788 0.839
Improvement 0.6% —0.3%
Method NAB MSLU

Pre. Rec. Fl Pre. Rec. F1
DSPOT 0.926 0.457 0.612 0.422 0.175 0.248
SR 0.233 0.067 0.104 0.873 0.932 0.901
VAE 0.904 0.803 0.859 0.965 0.345 0.493
PAD 0.893 0.844 0.868 0.871 0.342 0.473
LSTMAD 0.877 0.510 0.561 0.649 0.765 0.703
AnomalyTransformer 0.891 0.932 +0911 0.898 0.441 0.591
TFAD 0.265 0.233 +0.248 0.902 0.939 0.920
FCVAE 0.925 0.909 +0.917 0.785 0.742 0.763
PatchLinear 0.901 1.000 0.948 0.915 0.982 0.947
Improvement 3.4% 2.9%

The best Fl-score is bold and the second best is underlined. * digits are cited from PAD [5], T digits are cited from FCVAE [46]

superior performance on most of the datasets than other
methods, namely 0.6% on KPI, 3.4% on NAB and 2.9% on
MSLU, respectively.

Figure 4 shows the forecasting and anomaly detection
results from our method on four time series samples from
Yahoo dataset. As shown in the figure, our method shows
stable forecasting performance even the time series are
under concept drift of different patterns. Moreover, it is able
to precisely locate most of the anomalies across different
time series.

4.5 Online forecasting and detection

Owing to the concept drift, it is required to update the model
periodically. Due to the model complexity or the nature of
the model, not all the methods can be deployed online.
Only a few methods are able to perform both online sin-
gle-step forecasting and anomaly detection. In this section,
we evaluate our method as an online single-step forecast-
ing and anomaly detection method. PatchTST and PAD are
considered as the comparison baseline. Table 5 shows the
performance of anomaly detection as well as single-step
forecasting performance. The average time cost of process-
ing one timestamp from all the methods are also reported.
For each method, the performance from their offline

configuration is also reported. The major difference of the
online configuration from the offline lies the frequency of
the model update. For the online configuration, the model is
updated regularly.

As shown in the Table 5, both online PatchLinear and
PatchLinear outperform PatchTST and PAD across dif-
ferent datasets considerably. The performance difference
between online PatchLinear and PatchLinear is minor. In
contrast, the online PatchTST shows considerably inferior
performance from PatchTST in most of the cases. This
mainly owes to the complex structure of PatchTST model,
which requires sufficient data for effectively updating. PAD
shows similar performance fluctuation as PatchTST. Since
the anomaly detection of all three methods are more or less
based on the single-step forecasting. The detection per-
formance trend in Table 5 can be well interpreted by the
forecasting performance in Table 5. Moreover, owing to the
integration of moving threshold (MT) and distance signifi-
cance (DS) for anomaly detection, our method outperforms
PatchTST considerably even their forecasting performance
is similar. In terms of processing efficiency, online runs for
all the methods are slower than the offline runs due to the
extra time costs in model update. However, all the methods
could achieve real-time efficiency. In particular, our method
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Fig.4 The illustration of the single-  ©
step forecasting and the anomaly 4
detection on four time series from
Yahoo dataset
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Table 5 Performance of PatchLinear, PatchTST, PAD, and their processing efficiency on four datasets. The performance on anomaly detection
(F1-score), single-step forecasting (MSE), and efficiency (time cost per timestamp) is reported

Method KPI Yahoo
F1 MSE TM (ms) Fl MSE TM (ms)
PAD Offline 0.739 0.3883 1.024 0.755 19.6496 0.967
Online 0.628 0.4649 1.895 0.722 20.3692 1.796
PatchTST Offline 0.798 0.1647 1.931 0.531 5.9267 1.769
Online 0.779 0.2176 4912 0.466 5.6105 4.439
PatchLinear Offline 0.840 0.1654 0.392 0.838 4.6613 0.720
Online 0.845 0.1768 1.096 0.838 4.3629 1.105
Method NAB MSLU
F1 MSE TM (ms) F1 MSE TM (ms)
PAD Offline 0.868 2.8685 0.945 0.473 1.7981 0.971
Online 0.820 1.9389 1.884 0.444 2.0187 2.058
PatchTST Offline 0.842 1.3170 3.960 0.800 0.7206 1.918
Online 0.844 1.6233 4953 0.801 1.0035 4.953
PatchLinear Offline 0.948 1.3878 1.535 0.947 0.5807 0.576
Online 0.948 1.3271 1.854 0.945 0.5798 1.015

could process one timestamp within two milliseconds on all
the datasets.

4.6 Ablation study

In this section, ablation analysis is carried out to study the
contribution of each proposed scheme in the forecasting and
anomaly detection. In the ablation study of forecasting, we
compare the performance between PatchLinear and Linear
model. PatchLinear differs from Linear model in the adopt
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of patching. As shown in Table 6, the scheme boosts the
forecasting performance while involving little computa-
tional overhead.

In the ablation study on anomaly detection task, PatchTST is
treated as the comparison baseline. The same as the last experi-
ment, the threshold to judge whether a timestamp is anomalous
in PathTST is learned on the training data for each dataset. For
our method, the basic configuration (“PatchLinear” in Table 7)
detects the anomalies based on MAE between the status and
the single-step forecasting result. The other innovations over it
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Table 6 The ablation study of our method on single-step forecasting
task

Method NAB Yahoo

MSE TM (ms) MSE TM (ms)
Linear 1.4522 6.134 5.6091 1.632
PatchLinear 1.3798 6.152 4.1961 2.755

Table 7 The ablation study of our method on anomaly detection task

Method KPI Yahoo

F1 TM (ms) F1 TM (ms)
PatchTST 0.793 1.931 0.531 1.769
PatchLinear 0.794 0.469 0.526 0.702
+MT 0.812 0.474 0.828 0.679
+DS 0.827 0.851 0.835 0.854
+MAD 0.840 0.851 0.839 0.873

are integrated incrementally, such as moving threshold (MT),
distance significance (DS), and median absolute deviation
(MAD). Table 7 shows the detection performance (F1-score)
on KPI and Yahoo datasets from both PathTST and our method
under different configurations. The processing time cost per
timestamp of each run is also reported. As shown in the table,
the performance of our method under basic configuration is
similar to PatchTST, which is in line with the observation in
the single-step forecasting task. As the proposed schemes are
integrated incrementally, the steady performance improvement
is observed. Due to the extra time cost required for subse-
quence matching, the processing time cost increases when DS
is integrated. Nevertheless, the time cost is still two times lower
than that of PathTST. Moreover, further performance boost is
observed when MAD is integrated to address the case that
anomaly occurs in the best-matched historical subsequence.
The extra time cost introduced by the integration of MAD is
negligible.

4.7 Parameters sensitivity analysis

There are three hyper-parameters involved in our method,
namely wy, ¢,, and m. We study the anomaly detection per-
formance trend on dataset KPI when varying one of them
while fixing the others. The default values for wy, ¢, and
m are 120, 14, 400, and 1, 440 respectively. In the first test,

Fig.5 Performance on KPI dataset 0.86

the sequence window w; is varied in the range [60, 360].
As shown in Fig. 5a, the performance of anomaly detec-
tion undergoes slight fluctuation. This basically indicates
that w; only has minor influence on the detection as long
as it is in the range [60, 360]. The sensitivity tests for the
cache window c,, is shown in Fig. 5b. The best performance
is observed when c¢,, = 14400, namely 10 days. This basi-
cally reflects that shorter c¢,, may lack enough historical
context to accurately detect anomalies, while longer c,,
may introduce excessive outdated information, affecting the
performance of anomaly detection. Sensitivity tests for the
matching window m is shown in Fig. 5c. The best perfor-
mance is observed when m = 1440, namely 1| day. It indi-
cates that the matching window m should be selected in the
same rhythm as the cycle of a time series.

5 Conclusion

We have presented a simple but effective solution for both
single-step forecasting and unsupervised anomaly detection on
univariate time series. The core component in our solution is a
linear neural network. Although simple, it achieves similar per-
formance as the state-of-the-art Transformer-based networks.
Moreover, based on the forecasting results, an unsupervised
anomaly detection scheme is designed. With the integration
with the proposed distance significance, it shows considerably
superior performance on all the considered datasets over exist-
ing methods. Furthermore, due to the simplicity, our method
can be easily deployed as an online method both for forecast-
ing and anomaly detection. And the model size is as small as
10K ~30K bytes, which is so lightweight that is suitable for
various real scenarios.

Although the superior performance is achieved by our
method, it is specifically designed for univariate time series.
Due to the limitation of the network structure, it is unable to
capture the correlation between different variables when fac-
ing multivariate time series. In this context, new online detec-
tion framework is expected. Moreover, the integration of
clustering methods such as SVDD [37], EDCWRN [11], and

with different hyperparameters
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SSFCM-FWCW [33] will make the model more effective than
the proposed distance significance, which will be our future
work.
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