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abrupt changes are called anomalies. The detection of these 
anomalies is critical to maintaining the health of a system. 
The timely alarm on these anomalies is expected to trigger 
human intervention or manual diagnosis of the system. This 
task is widely known as anomaly detection.

Time series forecasting and anomaly detection are the 
fundamental tasks in the time series analysis, whereas 
neither of them is trivial to address. There are two major 
challenges. First of all, the time series are mixed with anom-
alous status in practice. It is laborious and error-prone to 
annotate these anomalies manually. It is, therefore, unrealis-
tic to adopt a fully supervised method to perform the detec-
tion. The existence of anomalies impacts the performance of 
forecasting as well. Moreover, due to the diversity of real-
world time series, it is impossible to build a general model 
that performs well on all time series. Instead, the model 
should be adaptive to different time series. Because of the 
concept drift [47] in one time series, the model should run 
online as well, which allows it to be adaptive to the trend 
transition across different spans of one time series.

On the one hand, these two problems are old topics in 
the sense that the early research on the forecasting issues 
could be traced back to nearly one century ago [12]. In such 
a long period, classic methods such as ARIMA [4], Kalman 
Filter  [14], and Holt-Winters  [19] are proposed one after 

1  Introduction

In the era of big data, a huge amount of time series data are 
generated each day from various sources, such as finance, IT 
security, medical, web services, social media, and geologi-
cal information systems. The processing and analysis over 
such varieties of time series are mostly domain-specific. Let 
X = {x1, · · · , xt, · · · , xn} be a time series. There are two 
basic processing requirements that are shared in common 
by various applications. Firstly, it is expected that we can 
forecast the future trend of X. Namely, we want to know the 
future timestamps xt+1···t+τ  given x1···t are known. Sec-
ondly, we would expect to know whether the current sta-
tus xt is normal. This is particularly important for the key 
performance indicators (KPIs) time series. They basically 
reflect the health of a system. The abrupt changes occur 
when anything abnormal happens. These status undergone 
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another. The implementations of these classic algorithms 
are found in the recent packages Prophet [43] and Hawku-
lar [15]. On the other hand, new light has been shed on this 
century-old subject due to the need of artificial intelligence 
for IT operations (AIOps) [2, 10] in recent years.

Intuitively, anomaly detection can be addressed by sta-
tistical methods in either the time domain or frequency 
domain [3, 36]. Namely, a status is viewed as abnormal if 
it deviates from its mean so much that breaks the 3-σ rule. 
Unfortunately, such a solution is only effective for simple 
scenarios. Moreover, due to the lack of annotations on the 
anomalies, the fully supervised model either on forecasting 
or anomaly detection is not preferred. As a consequence, 
the mainstream methods perform the time series forecast-
ing or reconstruction by unsupervised training. Given the 
forecasting or the reconstruction is sufficiently precise, the 
anomaly detection can be as easy as checking the degree 
of deviation of current status from the forecasted/recon-
structed status  [41, 44]. Before the introduction of deep 
neural networks, the representative forecasting methods 
are ARIMA [4], Kalman Filter [14], and Holt-Winters [19]. 
However, the forecasting precision of these methods is usu-
ally very low. They are unreliable to be based on to fulfill 
the detection. Although Prophet [43], recently developed by 
Facebook, performs significantly better, it still faces similar 
issues (as shown in Fig. 1b).

Due to the great success of deep neural networks in 
various domains, more and more methods built upon com-
plicated deep models are proposed for both time series 
forecasting and anomaly detection. The sequential models 
such as recurrent neural network (RNN) [9] and long short-
term memory (LSTM) [16] are adopted for forecasting as 
they are able to capture the sequential patterns across the 
different timestamps. Although encouraging performance 

is achieved [13], the forecasting results are not sufficiently 
good for anomaly detection (shown in Fig. 1c). In the recent 
studies  [32, 44, 59], the Transformer has been adopted in 
time series forecasting and anomaly detection owing to its 
powerful correlation capability. As shown from Fig. 1d, the 
forecasting results from the Transformer-based methods fit 
well to the normal status in the source sequence. However, 
due to the high complexity of the model, it is hardly deploy-
able in real scenarios where the training resources are lim-
ited, while the time series to be monitored could be in the 
hundreds.

In this paper, we propose a simple neural network to per-
form single-step forecasting and anomaly detection jointly. 
Contrary to the decade-old trend in the literature, that pro-
poses increasingly complicated models with deep neural 
network or Transformer [5, 32] for forecasting and anomaly 
detection, time series forecasting and anomaly detection are 
addressed by simple neural networks, which only consist of 
two-layer linear neural network. Concretely, this network 
predicts the next status with given history time series data, 
and then the anomaly detection is carried out based on the 
prediction. The merits of our method are at least threefold.

	● A simple but effective network is proposed for single-
step forecasting. Its performance is on the same par as 
state-of-the-art Transformer-based methods while it is 
considerably efficient.

	● Different from many existing works in the literature, the 
anomaly detection module is integrated with the fore-
casting module, which provides a universal solution for 
two fundamental tasks. Moreover, it shows the best per-
formance across most of the evaluation benchmarks for 
the two tasks.

Fig. 1  A time series and the fore-
casting results of it from Prophet, 
LSTM, PatchTST, linear neural 
network, and the proposed Patch-
Linear, respectively. The anomalies 
in the source series are marked 
with red dots
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	● Furthermore, this method can be deployed online and 
runs in real-time.

The remainder of this paper is organized as follows. In 
Sect. 2, we review the related works about anomaly detec-
tion and time series forecasting. In Sect. 3.2, the two-layer 
linear network designed for the single-step forecasting task 
is introduced. In Sect. 3.3, the proposed anomaly detection 
approach is presented. In Sect. 4, the effectiveness of our 
approach is evaluated on four univariate time series datas-
ets. Finally, we conclude our paper in Sect. 5.

2  Related works

2.1  Time series forecasting

The aim of time series forecasting (TSF) is to predict the 
status of future τ  timestamps when the history timestamps 
x1···t are provided. The predictor is expected to capture the 
seasonal patterns and trend, and to be robust to concept drift 
in the meantime. The forecasting can be long-term when 
τ ≫ 1 or single-step when τ = 1. For the long-term fore-
casting task, the method is required to focus on the long-
term trend of the time series. While for the single-step 
forecasting task, the method is required to capture the short-
term patterns in the time series. For this reason, the methods 
designed for long-term forecasting are not necessarily effec-
tive on the single-step forecasting problem, and vice versa.

In the literature, we can see methods proposed either for 
long-term forecasting or for single-step forecasting. Before 
the emergence of deep models, single-step forecasting was 
addressed mainly by methods from statistics or signal pro-
cessing, such as ARIMA [4], Kalman Filter [14], and Holt-
Winters [19]. The recent method Prophet [43] can be viewed 
as the enhancement over these traditional methods, in which 
the time series is decomposed into different components, and 
the different components are fit by different models. In gen-
eral, these methods are computationally efficient, and they 
are well-suited for performing forecasting on the stationary 
time series. However, the time series produced in various 
contexts are usually non-stationary. The correlation between 
different timestamps is non-linear. Very poor performance 
is observed on such time series by the traditional methods. 
Before the emergence of deep neural network, evolution-
ary computing methods  [39] like PSO  [20], GA  [17] and 
its variants [6, 40] have been employed to address the time 
series forecasting task and show considerable improvement 
over the traditional methods. However, they also face some 
notable drawbacks, such as high sensitivity to the hyperpa-
rameters and the initial conditions.

Owing to the high model complexity, the deep neural net-
works such as the LSTM [16] are expected to have the bet-
ter capability in capturing the temporal patterns. In the last 
decade, there have been various forecasting methods built 
upon LSTM [13]. In order to discover the most relevant fea-
ture to the prediction, the attention strategy has been inte-
grated into the RNN network [35]. However, these types of 
methods are sensitive to anomalies and noises. In order to 
boost the performance, ensemble learning is introduced into 
forecasting [51, 54]. However, such methods induce signifi-
cantly higher computational costs.

Transformer  [45] based models have shown great suc-
cess in natural language processing and computer vision. 
Recently, several long-term forecasting methods based 
on Transformer have been proposed. Namely, they are 
Informer  [59], Autoformer  [48], Pyraformer  [28], Tri-
former [8], FEDformer [60], and PatchTST [32]. Informer 
in [59] alleviates the induced computational complexity by 
Transformer model when applied in long-term forecasting. 
The variants of transformer [28, 32, 48, 60] integrate extra 
features into the model to either improve its performance or 
efficiency. The common issue latent in these transformer [45] 
based models is their vulnerability to the concept drift since 
they cannot be deployed online. Recently, the long-term 
forecasting methods based on Transformer have been chal-
lenged by a linear model [55]. As pointed out in the paper, 
a simple linear network outperforms Transformer-based 
methods such as Informer, Pyraformer, Autoformer, and 
FEDformer on the long-term forecasting task. The experi-
ments in  [32] confirm this discovery. In our paper, time 
series forecasting is designed to forecast the next incom-
ing status, and is also used as the supporting block for the 
anomaly detection.

2.2  Anomaly detection in time series

Because the single-step time series forecasting only predicts 
the expected status for a timestamp t, the anomaly detection 
can be achieved by checking the deviation of xt from the 
predicted status x̄t at timestamp t. If x̄t deviates from xt 
too much, it is viewed as an anomaly. As a result, the afore-
mentioned forecasting methods are potentially anomaly 
detection methods as well. In the following, brief reviews of 
other types of methods are presented.

There are varieties of reconstruction-based methods in 
the literature, nevertheless, they are out of the same motiva-
tion. Since the status of anomalies are far from normal and 
have a rare occurrence, they will be reconstructed to normal 
status. Similar to forecasting-based methods, xt is viewed 
as an anomaly when it is far from the reconstructed status 
x̄t. Traditionally, the reconstruction is fulfilled by PCA 
or SVD. In recent works, generative adversarial network 
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In this paper, we address the time series single-step fore-
casting and anomaly detection jointly. In contrast to build-
ing complicated models in many existing works [5, 32], a 
simple two-layer linear neural networks is adopted for the 
single-step forecasting. Based on the forecasted value x̄t at 
timestamp t, the judgment about whether xt is an anomaly 
is made.

3  Proposed method

3.1  Overview of the framework

Given a time series X = {x1, · · · , xt, · · · , xn}, xt ∈ Rd, 
where d is the time status dimension. Specifically, X is a 
univariate time series when d = 1, while X is a multivariate 
time series when d > 1. In the forecasting task, we are going 
to forecast xt+1 given x1···t are provided. In the the anom-
aly detection, we are going to judge whether xt is abnormal 
given x1···t−1 are provided. Our anomaly detection is based 
on the output from forecasting, namely the forecasted sta-
tus x̄t+1 will be used for anomaly detection at timestamp 
t + 1. For the convenience of our discussion, the anomaly 
detection is performed on timestamp t + 1 given x1···t are 
known from now on. In practice, this is easy to achieve to 
hold the forecasted status for the anomaly detection in the 
next timestamp.

Inspired by the discovery from [55], we attempt to ful-
fill the single-step time series forecasting by a linear neural 
networks. Thereafter, the anomaly detection is performed 
based on the forecasted status x̄t+1. The whole framework 
for single-step forecasting and anomaly detection is shown 
in Fig. 2. There are basically two processing pipelines in the 
framework. On the bottom pipeline in the figure, the time 
series are fed into a two-layer linear networks after a few 
steps of preprocessing. The network will first make the fore-
casting for timestamp t + 1. On the one hand, the forecasted 
status x̄t+1 is one of the outputs of our framework. On the 

(GAN)  [26, 57, 58], autoencoder (AE)  [24], variational 
autoencoder (VAE)  [5, 34, 42], and transformer  [50] are 
widely used to represent the deep features, then check the 
deviation to detect anomalies. The deep learning methods 
outperform traditional methods considerably. However, due 
to the high model complexity, transformer-based methods 
are susceptible to overfitting. While GAN-based methods 
are unstable due to the potential mode collapse during the 
training. For these reasons, both transformer-based methods 
and GAN-based methods require anomaly-free time series 
for training, which are hard to collect in practice. Moreover, 
there is no consideration about the online deployment of the 
model in any of these methods. Namely, these methods can-
not be self-adaptive to the concept drift in the time series.

Apart from the forecasting-based and reconstruction-
based methods, there are also detection methods based other 
theories. Dynamic spatial pyramid occupancy time-series 
model (DSPOT) is built on extreme value theory  [38]. 
By integrating spatial information with temporal dynam-
ics, DSPOT aims to detect anomalies and unusual patterns 
that may occur in both space and time. This method is only 
effective when the anomalies exhibit spatial and temporal 
dependencies. Spectral residual (SR) [36] performs anom-
aly detection in the frequency domain. The source time 
series is transformed into the frequency domain by the Fast 
Fourier transform. The significant residuals in the frequency 
domain correspond to the anomalies in the time domain. SR 
is very efficient and is effective in detecting the anomalies 
that deviates from normal significantly. It fails on the subtle 
anomalies which cannot be revealed in the spectral residue. 
Recently, the matrix profile (MP) [53] also has been adopted 
for anomaly detection. The xt is viewed as an anomaly 
when the distance of the subsequence containing xt to its 
closest subsequence is abnormally larger than the average 
distance. Although simple, MP shows promising detection 
performance. In contrast to the methods based deep models, 
both SR and MP can be deployed online. Similar to SR, MP 
fails on the subtle anomalies.

Fig. 2  The framework of the PatchLinear model. The flow in blue is responsible for the time series forecasting. The result from forecasting is fed 
into the flow in red for anomaly detection
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x̄t+1 = W2×(Flatten(W1×pj + b1)) + b2, j ∈ [1, num]� (1)

Loss =
n∑

t=1
(x̄t+1 − xt+1)2� (2)

As revealed later in the experiments, the forecasting perfor-
mance of this simple network is on the same par as the state-
of-the-art method PatchTST in most of the cases. Moreover, 
due to the simplicity of our method, it is cheap to be trained 
and deployed as an online model, which is able to adapt to 
the concept drift easily.

Discussion In the above network, a sliding window is 
adopted when we cut subsequence Sk into overlapping 
patches. Thereafter, the patches are fed into a two-layer lin-
ear network. Since the patches are produced from a subse-
quence with a sliding window, the first layer is comparable 
to applying a 1D-convolution over Sk. It therefore captures 
the correlation between timestamps within a short tempo-
ral range. The second linear layer performs linear mapping 
between the output of the first layer and the x̄t+1. Compared 
to the first layer, it covers the whole subsequence Sk. It, 
therefore, has a wider receptive field. As a result, it is able to 
mine the correlation between timestamps in a much wider 
range. As pointed out in [27], most of the local timestamps 
are linear dependent, it is sufficient to fulfill the single-step 
prediction by a layered linear-mapping [55].

Given the single-step time series forecasting is suffi-
ciently precise, it is easy to judge whether the status on a 
timestamp xt+1 is anomalous by referring to the forecasted 
value for this timestamp. In the next section, we are going to 
show how the forecasting network presented in this section 
serves as a major component for the anomaly detection task 
in our overall framework.

3.3  Anomaly detection

In the anomaly detection task, we are going to judge 
whether xt is abnormal when x1···t are known. Our anomaly 
detection is based on the output from forecasting, namely 
the predicted status x̄t+1 will be used for anomaly detec-
tion at timestamp t + 1. So there is one timestamp delay 
between the forecasting task and the detection task. For the 
convenience of our discussion, the anomaly detection is per-
formed on timestamp t + 1 given x1···t are known from now 
on. In practice, it is straightforward to save forecasted status 
until next timestamp arrives for anomaly detection task.

Thereafter, the anomaly detection is performed based 
on the predicted status x̄t+1. The whole framework con-
sists of single-step forecasting and anomaly detection, as 
shown in Fig. 2. There are two processing pipelines in the 
framework. On the bottom pipeline in the figure, x̄t+1 is 
obtained by the single-step forecasting module. On the one 

other hand, it is used as a weighted vote for the anomaly 
detection. On the top pipeline, the time series are fed into 
an unsupervised anomaly detection method. The anomaly 
judgment is made based on the “distance significance” of 
xt+1 from the historical status x1···t. The final judgment on 
whether xt+1 is an anomaly is made by a weighted vote 
from two pipelines.

3.2  Single-step time series forecasting

In the forecasting task, given a time series X, we are going to 
forecast xt+1 when x1···t are provided. It is possible to adopt 
transformer [32, 48, 59] to fulfill the forecasting. However, 
linear neural network such as DLinear [55] is preferred for 
at least two reasons. First of all, self-attention mechanism 
in transformer makes it permutation-invariant. It is good 
in language translation task, however it is harmful for time 
series forecasting, in which the strict sequential order mat-
ters. Moreover, the quadratic time and memory complexity 
makes self-attention mechanism an unaffordable operation 
in this context which typically requires real-time perfor-
mance. In contrast, the light-weight linear neural network 
already demonstrates excellent performance in long-term 
time series forecasting task than many Transformer-based 
methods [55]. Therefore, in our single-step time series fore-
casting task, the linear neural network is adopted.

The length of time series could be arbitrary, while 
the size of neural network input is fixed. Following 
the common practice in the literature, the time series 
is cut into subsequences. Given the arrived t time-
stamps of time series X, window size w1, and stride 1, 
time series is transformed into a set of subsequences 
φ = {S1, · · ·, Sk, · · ·, St−w1+1}, Sk ∈ Rw1 . Please note 
that X is z-score normalized before it is cut into subsequences 
φ. Then following the practice in [32], the subsequence is 
further divided into patches to capture the patterns within 
the small temporal window. Namely, Sk is cut into overlap-
ping patches with window size pl and stride s. As a result, a 
subsequence Sk is patched as Pk = {p1, · · ·, pj , · · ·, pnum}, 
where num = w1−pl

s + 1. As revealed later, such kind of 
patching allows the network to extract detailed feature rep-
resentation from each subsequence. These features capture 
local patterns or temporal characteristics within shorter time 
frames. The patched subsequence is first normalized by a 
reversible instance normalization, as proposed in previous 
work [21], and then is fed into a two-layer fully connected 
linear network for the single-step forecasting task. The net-
work is formulized in Eq. 1. Given x̄t+1 is the forecasted 
status at timestamp t + 1, the loss of the forecasting net-
work can be simply defined by mean squared error (MSE), 
which is given by Eq. 2. The whole forecasting network is 
shown inside the dashed bounding-box in Fig. 2.
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are, therefore, estimated from these cached statuses. At this 
stage, Tt+1 is set to be the maximum among the estimated 
from the cache and the first 30 timestamps estimated from 
the current subsequence.

Figure  3d shows the moving threshold derived from 
arrived time subsequence. Due to the good forecasting per-
formance (as shown in Fig. 3c), most of the anomalies can 
be easily identified by the moving threshold.

The above anomaly detection based on MAE is effective 
in detecting anomalies on a stationary time series. Never-
theless, it fails on the non-stationary time series. A typical 
scenario is given in Fig. 3d. This strategy fails to detect the 
first anomaly on the time series, where the anomaly is insig-
nificant compared to the variations across the arrived status 
(status on the left of the first anomaly). To address this issue, 
another method called distance significance is proposed, 
which is detailed in the next section.

3.3.2  Distance significance

In the above method, anomaly detection on a timestamp is 
achieved by checking the deviation of real status from the 
forecasted status. Nevertheless, anomaly detection based 
solely on the single-step forecasting cannot necessarily lead 
to good performance. On the one hand, a status is viewed as 
anomaly usually by referring to its neighboring status. All 
these consecutive status could be in small value when they 
are in the valley of a curve. On the other hand, the mov-
ing threshold is largely the average of recent status, which 
could be large due to the peaks in the curve or the poten-
tial anomalies. For this reason, the anomalies in small value 
could be overlooked. Such issues are illustrated in Fig. 3d. 
To address these issues, we integrate the distance signifi-
cance (DS) into the detection model, which contrasts the 
difference of a status against the best matched subsequence 
in the history. This strategy has been widely adopted in vari-
ous fields. For instance, the meteorologist judges whether 
the temperature of a certain day is abnormal by referring 
to the historical temperature data of that day in history. In 
particular, he will compare with the year when the tem-
perature data are the best-match in a small period before 
that day. Based on this idea, our second anomaly detection 
strategy is conceived. There are basically two steps in this 
strategy. Namely, we first search for the best-match subse-
quence from the observed time series. Then, we measure 
the significance of the difference between the current status 
and the best-matched subsequence. If they are significantly 
different, current status is deemed as an anomaly.

Given a time series X, the subsequence to be judged 
Xt−m+1,m is defined as a continuous interval of 
length m starting from the position t − m + 1, i.e., 
Xt−m+1,m = {xt−m+1, xt−m+2, . . . , xt+1}. Similar to the 

hand, the forecasted status x̄t+1 serves as one of the out-
puts of our framework, namely single-step forecasting. On 
the other hand, the deviation of xt+1 from the forecasted 
status x̄t+1 is used for the downstream anomaly detection 
task. Herein, we adopt the principle that is shared by predic-
tion-based anomaly detection methods “the anomalies are 
unpredictable” [1].

In order to boost the detection performance, another 
method based on the proposed distance significance is inte-
grated into the framework, which is shown as the pipeline 
on the top part in Fig. 2. In the rest of this section, we are 
going to present two integrated detection methods in detail.

3.3.1  Moving threshold

In general, “the anomalies are unpredictable”, the forecast-
ing component introduced in the previous section will only 
forecast the normal status of timestamp t + 1. It is straight-
forward to judge whether status xt+1 is anomalous by 
referring to the forecasted status x̄t+1. We select the mean 
absolute error (MAE) to measure the deviation as anom-
aly score. Then, the key issue is to decide to what degree 
that xt+1 deviates from x̄t+1 that it should be viewed as 
an anomaly. Intuitively, one could set a fixed threshold to 
dictate whether xt+1 is an anomaly. Several anomaly detec-
tion methods compute an anomaly threshold after they get 
all anomaly scores for a dataset [44, 46]. However, this is 
unrealistic in practice. First of all, only the status before 
timestamp t + 1 are known. One cannot estimate the thresh-
old based on future status. On the other hand, one cannot 
simply fix the threshold due to the concept drift. To address 
this issue, we propose to update this threshold dynamically.

Given µ and σ are the mean and standard deviation of a 
subsequence respectively, the threshold for the current sta-
tus is defined as

Tt+1 = µ + k·σ,� (3)

where k is a hyper-parameter. In Eq.  3, µ and σ are esti-
mated from a subsequence. At different stages, µ and σ are 
estimated in different ways. In principle, they are estimated 
from the subsequence that is close to timestamp t + 1. At 
the initial stage, due to the insufficient number of time sta-
tus data for prediction and detection, we have to rely on the 
µ and σ computed during the training stage. Meanwhile, 
in order to be adaptive to continuously arriving new sta-
tus, Tt+1 is set to be the maximum among the one esti-
mated from the training sequence and the one estimated 
from the first 30 timestamps from the current subsequence. 
When sufficient number of new status arrive during the test 
stage, the deviations of the status from its forecasted sta-
tus at the recent cw timestamps are cached. The µ and σ 
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where µi and µj  are the mean of Xi,m and Xj,m respec-
tively. Following the way of matrix profile [61], we can first 
rewrite Eq. 4 into

d(Xi,m, Xj,m) =
√

m(σ2
i + σ2

j ) − 2(⟨Xi,m, Xj,m⟩ − mµiµj).� (5)

This distance computation between Xi,m and Xj,m can be 
sped up by the following Eq. 6.

forecasting task, the time series X is cut into subsequences 
with a sliding window. The step size of the sliding window 
is 1 and the window size is m. Given a query subsequence 
Xi,m, its Euclidean distance to another subsequence Xj,m 
is computed by

d(Xi,m, Xj,m) =
√

∥(Xi,m − µi1) − (Xj,m − µj1)∥2
,� (4)

Fig. 3  The illustration of anomaly detection by different modules in PatchLinear. d Shows the anomaly detection based on the forecasting results 
in figure (c). e Shows the anomaly detection based on distance significance
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Nevertheless, it is possible there are anomalies in the 
best-match subsequence. In this case, it is no longer mean-
ingful to treat the best-match subsequence as the reliable 
reference for the detection. To address this issue, the median 
absolute deviation (MAD) [25] is adopted to detect anom-
alies on a given subsequence. Similar to the distance sig-
nificance, a status of a timestamp xi+m−1 is viewed as an 
anomaly when the Di+m−1 in Eq. 8 is higher than a fixed 
threshold θ ∈ (0, 1).

Di+m−1 = 0.674 ∗ |(xi+m−1 − Median(Xi,m))|
Median(|(Xi,m − Median(Xi,m))|)

,� (8)

where function Median(·) returns median of an input 
subsequence. The factor 0.674 is an empirical constant 
from  [25]. MAD judges whether the last timestamp in the 
subsequence is an anomaly based on the properties of the 
subsequence itself when the best-match subsequence is not 
reliable. It checks whether the last timestamp in the current 
subsequence deviates significantly from the median of the 
subsequence. Relying on the median instead of the com-
monly used mean, it becomes robust to extremely high or 
low status.

The complete detection framework is shown in Fig. 2. The 
first detection pipeline relies on the output from the single-
step forecasting, which has been elaborated in Sect. 3.3.1. 
The second pipeline (pipeline on the top) relies on distance 
significance and median absolute deviation. Given a sta-
tus xt+1, it is viewed as an anomaly when it is detected by 
either of them. The source codes of our paper are available 
at ​h​t​t​p​​s​:​/​​/​g​i​t​​h​u​​b​.​c​​o​m​/​w​​l​z​h​​a​o​2​​2​/​P​a​t​c​h​L​i​n​e​a​r.

3.4  Complexity analysis

There are two pipelines in our anomaly detection frame-
work. Namely, one pipeline is a two-layer linear network. 
Another essentially performs subsequence matching 
between the current subsequence and the historical ones. 
The complexity of the first pipeline is mainly determined by 
the scale of network parameters. The number of parameters 
in different layers is shown in Table 1. For time series in dif-
ferent granularities, two configurations are used. As shown 
from the table, the number of parameters is less than 5K, 
which is quite light-weight in contrast to 100K involved in 
the Transformer-based method [32].

For the pipeline of anomaly detection based on distance 
significance, the most intensive operation is the distance 
calculation between subsequences. Given cw and m are 
the cache length of historical series and the window size 
of current subsequence respectively, the time complexity 
is O(cw · m). As a result, the time complexity of anomaly 

⟨Xi,m, Xj,m⟩ = ⟨Xi−1,m, Xj−1,m⟩ − xi−1xj−1 + xi+m−1xj+m−1,� (6)

where σi, σj  in Eq.  5 are the standard deviations of two 
subsequences.

In order to avoid trivial matches [31], an exclusion zone 
of m

2  before and after the subsequence in the time series is 
ignored. Given subsequence Xj,m is the best-matched for 
the current sequence Xi,m, the timestamp j will be recorded 
for subsequence Xi,m. In order to speed up the matching 
procedure, we only keep the last cw inner products, which 
means we only match the most recent cw subsequences. 
In this way, the time complexity of the distance profile is 
reduced to O(cw·m).

Once we find the best-matching subsequence for the cur-
rent subsequence, we should proceed to evaluating the dif-
ference between them such that to judge whether the last 
timestamp (xi+m−1) in Xi,m is abnormal. This timestamp 
is exactly xt+1 that is aforementioned.1 Given subsequence 
Xi,m and its best-matching subsequence Xj,m, we aim to 
judge whether the last timestamp in subsequence Xi,m, 
namely xi+m−1 is an anomaly. To achieve that, the distance 
significance on timestamp i + m − 1 is defined as

r̂i = ((xi+m−1 − µ̂i) − (xj+m−1 − µ̂j))2
∑m−1

w=m−l((xi+w − µ̂i) − (xj+w − µ̂j))2
,� (7)

where µ̂i and µ̂j  are the means of the last l status of Xi,m 
and Xj,m respectively. Equation  7 measures the signifi-
cance that the distance between last status xi+m−1 and 
xj+m−1 in contrast to a strip of distance between Xi,m 
and Xj,m. As shown in Fig. 3e, we can see that if xi+m−1 
is abnormal, r̂i is unexpectedly high, and it is invariant to 
amplitude changes since it is a distance ratio relative to its 
best-matched subsequence. In Eq. 7, l is a parameter and is 
set to 30, which is the same as the MAE score window. In 
practice, there may be more than one anomaly within Xi,m. 
As a result, l is recommended to be smaller than m when m 
is a large status, otherwise status r̂i remains small even if an 
anomaly occurs. Once the distance significance ratio r̂i is 
ready, an anomaly is detected when its r̂i is above a hyper-
parameter threshold η ∈ (0, 1).

1  For the convenience of presentation, we refer xt+1 as xi+m−1 
across this section.

Table 1  The number of parameters across different layers in our net-
work under two settings “hourly” and “minutely”
Granularity Input w1 Patching Layer-1 Layer-2 #Para.
Hourly 24 pl = 12, s = 4 12 → 64 (4 × 64) 

→ 1
1344

Minutely 120 pl = 12, s = 4 12→64 (28×64) 
→ 1

4416
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hyper-parameter q is 7 in KPI, 3 in Yahoo, 150 in NAB, and 
60 in MSLU, respectively. The higher the precision, recall, 
and F1 score, the better the detection performance. In addi-
tion, the average time cost of forecasting every timestamp 
by different methods are reported.

4.2  Experiment setting

In this section, we set two versions of parameters for datas-
ets with different time granularities. For minute-level datas-
ets, matching window m, sequence length w1, and threshold 
η are experimentally set to 1,440, 120 and 0.4, respectively. 
Specifically, due to the short length of the MSLU dataset, 
the matching window is set to 360. For hour-level datasets, 
m, w1 and η are 48, 24 and 0.7, respectively. The cached 
window cw, MAD threshold θ and score window l are set 
to 10 days, 0.5 and 30 for all datasets, respectively. All the 
experiments are performed on a PC with an Intel i7-8700 
CPU @ 3.2GHz (12 cores) and 16GB of memory.

4.3  Performance on single-step forecasting

The performance of our method is compared with the rep-
resentative time series forecasting and anomaly detection 
methods in the literature. For forecasting task, the con-
ventional approaches ARIMA  [4] and Prophet  [43], clas-
sic methods based on neural network such as LSTM [16], 
GRU  [7], and recent methods PAD  [5], DLinear  [55], 
iTransformer [29] and PatchTST [32] are also considered. 
ARIMA and Prophet are the classic methods for time series 
forecasting tasks. LSTM and GRU are the classic neural-
networks used in time series forecasting task. The PAD is 
an integration of VAE and LSTM that is able to perform 
the forecasting task and anomaly detection task on the time 
series. DLinear, iTransformer, and PatchTST are recently 
developed and show superior performance on time series 
forecasting tasks.

The performance of the single-step forecasting task 
from our method and state-of-the-art methods is shown in 
Table 3. The performance from the classic methods such as 
ARIMA and Prophet is pretty poor across all the datasets 
since they are unable to capture the non-linear correlation 
between timestamps. Deep models such as GRU, LSTM, 
and PAD demonstrate satisfactory performance on KPI 
dataset, whereas perform poorly on the rest due to their 
vulnerability to the noises and anomalies. iTransformer 
performs well on the Yahoo dataset but gets unsatisfactory 
results on the KPI dataset, indicating that the method is only 
good at periodic time series. The result of DLinear shows 
potential effectiveness of linear network for single-step 
forecasting task and has same speed compared to classic 
statistical method. Thanks to the introduction of patching 

detection is O(t · cw · m) when the length of a time series 
is t.

4  Experiments

4.1  Datasets and evaluation protocol

In this section, the effectiveness of our method in single-
step forecasting and anomaly detection is evaluated on 
four benchmarks, KPI  [2], Yahoo  [52], NAB  [23], and 
MSLU  [18]. The brief information about these four data-
sets is summarized in Table 2. The KPI dataset is released 
by the AIOps Challenge Competition. The KPIs series are 
collected from various Internet companies, such as Sogou, 
eBay, and Alibaba. All the time series are minute-level, and 
the anomalies are annotated. The Yahoo dataset is released 
by Yahoo Lab. The dataset consists of real-world and syn-
thetic time series. The real-world series are collected from 
the real traffic of Yahoo services. Both the real and synthetic 
series are hour-level. NAB is an open dataset released by 
Numenta. Following previous work [46], we apply 10 uni-
variate time series from Twitter in this dataset. MSLU is 
derived from the MSL dataset, a multivariate benchmark 
for time series anomaly detection released by NASA, which 
recorded the status of the Mars rover. The first dimension 
of MSL is adopted in our experiment as a univariate time 
series for evaluation. For all of the datasets, each time series 
is evenly divided into two parts. The first part is used for 
training, and the second part is for test. For the subsequence 
used for training, the first 70% of timestamps are used for 
training, while the rear 30% of timestamps are used for 
validation.

In the single-step forecasting task, following the prac-
tice in [32], mean squared error (MSE) and mean absolute 
error (MAE) are adopted in the evaluation. The lower MSE 
and MAE, the better the forecasting performance. In the 
anomaly detection task, following the convention in the lit-
erature [36, 49], precision, recall, and F1-score are used in 
our evaluation. Usually, operators are more concerned about 
whether an anomaly can be successfully detected within an 
acceptable delay in real practice. Therefore, following the 
evaluation metrics in previous works and competition  [2, 
36, 49], the detection is viewed as a true-positive sample if 
an anomaly is detected in q timestamps after the anomaly is 
generated. Following the previous practice in [2, 5, 46], the 

Table 2  The brief statistics on the four evaluation datasets
Dataset #Series #Timestamps #Anomalies Granularity
KPI 29 5,922,913 134,114 (2.26%) Minute
Yahoo 367 572,966 3,896 (0.68%) Hour
NAB 10 158,631 15,689 (9.89%) Minute
MSLU 18 78,644 6,622 (8.42%) Minute
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status and the reconstructed normal status. LSTMAD [30] is 
comprised by several LSTM layers. Similar as other recon-
struction-based method, the anomaly is detected by check-
ing the discrepancy between the forecasted status and the 
real status. AnomalyTransformer  [50] adopts the attention 
strategies in the time series reconstruction. The anomaly 
detection is achieved by referring to the reconstructed status 
as well. TFAD extracts feature vectors for the subsequence 
(to be considered) and the context subsequence where the 
subsequence is located in both time and frequency domain. 
The anomalies are detected based on the distance of their 
corresponding feature vectors between the subsequence and 
context subsequence.

The detection performance on four datasets of anomaly 
detection task is shown in Table 4. The methods are roughly 
divided into three groups according to their overall perfor-
mance. Traditional methods DSPOT, and SR show poor 
performance, and their performance fluctuates significantly 
across different datasets. These methods fail when the 
anomalies are insignificant. Methods based on the classic 
neural networks such as VAE, PAD, LSTMAD and TFAD 
outperform the traditional methods. However, their perfor-
mance still fluctuates considerably across different datasets. 
Compared to PatchLinear, they are either unable to fully 
capture the correlation between timestamps or are too sensi-
tive to the noises and anomalies. Overall, our method shows 

scheme, the forecasting accuracy of our method outper-
forms DLinear consistently. PatchTST and our method show 
the best performance across different datasets. Our method 
achieves the best performance on 3/8 measurements. For the 
remaining 5/8 measurements, it only shows slightly infe-
rior performance than the much more complicated models 
PatchTST or iTransformer. When it comes to the forecast-
ing efficiency, our single-step forecasting component shows 
around 7 times faster speed over PatchTST while achieving 
similar forecasting accuracy.

4.4  Performance on anomaly detection

For the anomaly detection task, our method is evalu-
ated in comparison to the conventional methods such as 
DSPOT  [38] and SR  [36], and methods based on unsu-
pervised networks VAE  [22], LSTMAD  [30], PAD  [5], 
TFAD  [56], and FCVAE  [46]. In addition, our method is 
also compared with RNN-based method LSTMAD  [30] 
and attention-based method AnomalyTransformer  [50]. 
DSPOT detects the anomalies based on the extreme value 
theory. SR transforms the source series into the frequency 
domain. The anomalies are reflected as the residuals in the 
frequency domain. Methods VAE, PAD, and FCVAE are 
reconstruction-based methods. The anomalies are detected 
when the discrepancy is significant between the original 

Table 3  The single-step forecasting performance evaluation by MSE and MAE on KPI, Yahoo, NAB, and MSLU datasets. Additionally, the aver-
age inference time for each stamp is reported for each method
Method KPI Yahoo

MSE MAE TM (ms) MSE MAE TM (ms)
ARIMA 0.8488 0.8735 0.013 21.3454 1.3756 0.014
Prophet 1.5643 0.8464 0.237 20.9178 0.9897 0.307
GRU 0.2920 0.2098 0.308 20.5051 1.1603 0.300
LSTM 0.2683 0.2026 0.313 20.7485 1.2312 0.312
PAD 0.3883 0.2541 1.024 19.6496 0.9660 0.967
DLinear 0.2058 0.1806 0.115 5.4978 0.3675 0.115
PatchTST 0.1801 0.1647 1.530 5.9267 0.3130 1.177
iTransformer 0.3389 0.2552 1.192 4.3630 0.3294 1.201
PatchLinear 0.1747 0.1654 0.207 4.6613 0.3203 0.203
Improvement 3.0% −0.4% − −6.8% −2.3% −
Method NAB MSLU

MSE MAE TM (ms) MSE MAE TM (ms)
ARIMA 1.7561 0.5408 0.024 3.1339 1.1271 0.007
Prophet 2.4999 0.8381 0.428 6.9587 1.7401 0.108
GRU 1.6370 0.5801 0.552 1.7042 0.6662 0.157
LSTM 1.5428 0.5091 0.560 1.9287 0.7227 0.155
PAD 2.8685 0.8314 1.794 1.7980 0.7185 0.512
DLinear 1.5941 0.4806 0.221 1.3342 0.6343 0.061
PatchTST 1.3170 0.4107 2.708 0.7206 0.3059 0.743
iTransformer 1.4327 0.4295 2.263 1.2592 0.5604 0.613
PatchLinear 1.3878 0.4150 0.394 0.5807 0.2745 0.106
Improvement −5.4% −1.0% − 24.1% 11.4% −
The best performance is marked in bold, while the second best performance is underlined
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configuration is also reported. The major difference of the 
online configuration from the offline lies the frequency of 
the model update. For the online configuration, the model is 
updated regularly.

As shown in the Table  5, both online PatchLinear and 
PatchLinear outperform PatchTST and PAD across dif-
ferent datasets considerably. The performance difference 
between online PatchLinear and PatchLinear is minor. In 
contrast, the online PatchTST shows considerably inferior 
performance from PatchTST in most of the cases. This 
mainly owes to the complex structure of PatchTST model, 
which requires sufficient data for effectively updating. PAD 
shows similar performance fluctuation as PatchTST. Since 
the anomaly detection of all three methods are more or less 
based on the single-step forecasting. The detection per-
formance trend in Table  5 can be well interpreted by the 
forecasting performance in Table 5. Moreover, owing to the 
integration of moving threshold (MT) and distance signifi-
cance (DS) for anomaly detection, our method outperforms 
PatchTST considerably even their forecasting performance 
is similar. In terms of processing efficiency, online runs for 
all the methods are slower than the offline runs due to the 
extra time costs in model update. However, all the methods 
could achieve real-time efficiency. In particular, our method 

superior performance on most of the datasets than other 
methods, namely 0.6% on KPI, 3.4% on NAB and 2.9% on 
MSLU, respectively.

Figure  4 shows the forecasting and anomaly detection 
results from our method on four time series samples from 
Yahoo dataset. As shown in the figure, our method shows 
stable forecasting performance even the time series are 
under concept drift of different patterns. Moreover, it is able 
to precisely locate most of the anomalies across different 
time series.

4.5  Online forecasting and detection

Owing to the concept drift, it is required to update the model 
periodically. Due to the model complexity or the nature of 
the model, not all the methods can be deployed online. 
Only a few methods are able to perform both online sin-
gle-step forecasting and anomaly detection. In this section, 
we evaluate our method as an online single-step forecast-
ing and anomaly detection method. PatchTST and PAD are 
considered as the comparison baseline. Table 5 shows the 
performance of anomaly detection as well as single-step 
forecasting performance. The average time cost of process-
ing one timestamp from all the methods are also reported. 
For each method, the performance from their offline 

Table 4  The anomaly detection performance evaluation by precision, recall, and F1-score of our method and state-of-the-art approaches on KPI, 
Yahoo, NAB, and MSLU datasets
Method KPI Yahoo

Pre. Rec. F1 Pre. Rec. F1
DSPOT 0.623 0.447 ∗0.521 0.241 0.458 ∗0.316
SR 0.647 0.598 ∗0.622 0.451 0.747 ∗0.563
VAE 0.725 0.648 ∗0.685 0.773 0.549 ∗0.642
PAD 0.839 0.660 ∗0.739 0.837 0.688 ∗0.755
LSTMAD 0.786 0.590 0.674 0.413 0.198 0.268
AnomalyTransformer 0.622 0.240 +0.346 0.054 0.020 +0.029
TFAD 0.650 0.714 +0.680 0.883 0.734 +0.802
FCVAE 0.906 0.772 +0.835 0.897 0.792 +0.842
PatchLinear 0.858 0.822 0.840 0.899 0.788 0.839
Improvement 0.6% −0.3%
Method NAB MSLU

Pre. Rec. F1 Pre. Rec. F1
DSPOT 0.926 0.457 0.612 0.422 0.175 0.248
SR 0.233 0.067 0.104 0.873 0.932 0.901
VAE 0.904 0.803 0.859 0.965 0.345 0.493
PAD 0.893 0.844 0.868 0.871 0.342 0.473
LSTMAD 0.877 0.510 0.561 0.649 0.765 0.703
AnomalyTransformer 0.891 0.932 +0.911 0.898 0.441 0.591
TFAD 0.265 0.233 +0.248 0.902 0.939 0.920
FCVAE 0.925 0.909 +0.917 0.785 0.742 0.763
PatchLinear 0.901 1.000 0.948 0.915 0.982 0.947
Improvement 3.4% 2.9%
The best F1-score is bold and the second best is underlined. ∗ digits are cited from PAD [5], + digits are cited from FCVAE [46]

1 3



International Journal of Machine Learning and Cybernetics

of patching. As shown in Table  6, the scheme boosts the 
forecasting performance while involving little computa-
tional overhead.

In the ablation study on anomaly detection task, PatchTST is 
treated as the comparison baseline. The same as the last experi-
ment, the threshold to judge whether a timestamp is anomalous 
in PathTST is learned on the training data for each dataset. For 
our method, the basic configuration (“PatchLinear” in Table 7) 
detects the anomalies based on MAE between the status and 
the single-step forecasting result. The other innovations over it 

could process one timestamp within two milliseconds on all 
the datasets.

4.6  Ablation study

In this section, ablation analysis is carried out to study the 
contribution of each proposed scheme in the forecasting and 
anomaly detection. In the ablation study of forecasting, we 
compare the performance between PatchLinear and Linear 
model. PatchLinear differs from Linear model in the adopt 

Table 5  Performance of PatchLinear, PatchTST, PAD, and their processing efficiency on four datasets. The performance on anomaly detection 
(F1-score), single-step forecasting (MSE), and efficiency (time cost per timestamp) is reported
Method KPI Yahoo

F1 MSE TM (ms) F1 MSE TM (ms)
PAD Offline 0.739 0.3883 1.024 0.755 19.6496 0.967

Online 0.628 0.4649 1.895 0.722 20.3692 1.796
PatchTST Offline 0.798 0.1647 1.931 0.531 5.9267 1.769

Online 0.779 0.2176 4.912 0.466 5.6105 4.439
PatchLinear Offline 0.840 0.1654 0.392 0.838 4.6613 0.720

Online 0.845 0.1768 1.096 0.838 4.3629 1.105
Method NAB MSLU

F1 MSE TM (ms) F1 MSE TM (ms)
PAD Offline 0.868 2.8685 0.945 0.473 1.7981 0.971

Online 0.820 1.9389 1.884 0.444 2.0187 2.058
PatchTST Offline 0.842 1.3170 3.960 0.800 0.7206 1.918

Online 0.844 1.6233 4.953 0.801 1.0035 4.953
PatchLinear Offline 0.948 1.3878 1.535 0.947 0.5807 0.576

Online 0.948 1.3271 1.854 0.945 0.5798 1.015

Fig. 4  The illustration of the single-
step forecasting and the anomaly 
detection on four time series from 
Yahoo dataset
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the sequence window w1 is varied in the range [60, 360]. 
As shown in Fig.  5a, the performance of anomaly detec-
tion undergoes slight fluctuation. This basically indicates 
that w1 only has minor influence on the detection as long 
as it is in the range [60, 360]. The sensitivity tests for the 
cache window cw is shown in Fig. 5b. The best performance 
is observed when cw = 14400, namely 10 days. This basi-
cally reflects that shorter cw may lack enough historical 
context to accurately detect anomalies, while longer cw 
may introduce excessive outdated information, affecting the 
performance of anomaly detection. Sensitivity tests for the 
matching window m is shown in Fig. 5c. The best perfor-
mance is observed when m = 1440, namely 1 day. It indi-
cates that the matching window m should be selected in the 
same rhythm as the cycle of a time series.

5  Conclusion

We have presented a simple but effective solution for both 
single-step forecasting and unsupervised anomaly detection on 
univariate time series. The core component in our solution is a 
linear neural network. Although simple, it achieves similar per-
formance as the state-of-the-art Transformer-based networks. 
Moreover, based on the forecasting results, an unsupervised 
anomaly detection scheme is designed. With the integration 
with the proposed distance significance, it shows considerably 
superior performance on all the considered datasets over exist-
ing methods. Furthermore, due to the simplicity, our method 
can be easily deployed as an online method both for forecast-
ing and anomaly detection. And the model size is as small as 
10K∼30K bytes, which is so lightweight that is suitable for 
various real scenarios.

Although the superior performance is achieved by our 
method, it is specifically designed for univariate time series. 
Due to the limitation of the network structure, it is unable to 
capture the correlation between different variables when fac-
ing multivariate time series. In this context, new online detec-
tion framework is expected. Moreover, the integration of 
clustering methods such as SVDD [37], EDCWRN [11], and 

are integrated incrementally, such as moving threshold (MT), 
distance significance (DS), and median absolute deviation 
(MAD). Table 7 shows the detection performance (F1-score) 
on KPI and Yahoo datasets from both PathTST and our method 
under different configurations. The processing time cost per 
timestamp of each run is also reported. As shown in the table, 
the performance of our method under basic configuration is 
similar to PatchTST, which is in line with the observation in 
the single-step forecasting task. As the proposed schemes are 
integrated incrementally, the steady performance improvement 
is observed. Due to the extra time cost required for subse-
quence matching, the processing time cost increases when DS 
is integrated. Nevertheless, the time cost is still two times lower 
than that of PathTST. Moreover, further performance boost is 
observed when MAD is integrated to address the case that 
anomaly occurs in the best-matched historical subsequence. 
The extra time cost introduced by the integration of MAD is 
negligible.

4.7  Parameters sensitivity analysis

There are three hyper-parameters involved in our method, 
namely w1, cw and m. We study the anomaly detection per-
formance trend on dataset KPI when varying one of them 
while fixing the others. The default values for w1, cw, and 
m are 120, 14, 400, and 1, 440 respectively. In the first test, 

Table 6  The ablation study of our method on single-step forecasting 
task
Method NAB Yahoo

MSE TM (ms) MSE TM (ms)
Linear 1.4522 6.134 5.6091 1.632
PatchLinear 1.3798 6.152 4.1961 2.755

Table 7  The ablation study of our method on anomaly detection task
Method KPI Yahoo

F1 TM (ms) F1 TM (ms)
PatchTST 0.793 1.931 0.531 1.769
PatchLinear 0.794 0.469 0.526 0.702
+ MT 0.812 0.474 0.828 0.679
+ DS 0.827 0.851 0.835 0.854
+ MAD 0.840 0.851 0.839 0.873

Fig. 5  Performance on KPI dataset 
with different hyperparameters
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