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ABSTRACT

Deep metric learning aims to transform input data into an em-

bedding space, where similar samples are close while dissimi-

lar samples are far apart from each other. In practice, samples

of new categories arrive incrementally, which requires the pe-

riodical augmentation of the learned model. The fine-tuning

on the new categories usually leads to poor performance on

the old, which is known as “catastrophic forgetting”. Exist-

ing solutions either retrain the model from scratch or require

the replay of old samples during the training. In this paper, a

complete online deep metric learning framework is proposed

based on mutual distillation for both one-task and multi-task

scenarios. Different from the teacher-student framework, the

proposed approach treats the old and new learning tasks with

equal importance. No preference over the old or new knowl-

edge is caused. In addition, a novel virtual feature estimation

approach is proposed to recover the features assumed to be

extracted by the old models. It allows the distillation between

the new and the old models without the replay of old training

samples or the holding of old models during the training. A

comprehensive study shows the superior performance of our

approach with the support of different backbones.

Index Terms— Deep metric learning, knowledge distil-

lation, mutual learning, feature estimation, online learning

1. INTRODUCTION

Owing to the seminal learning framework from [1], deep met-

ric learning has been successfully applied in various tasks

such as face recognition [1, 2], person re-identification [3],

and fine-grained image search [4, 5], etc. The research fo-

cus in recent years has been on mining hard training sam-

ples [2, 4, 6]. In most of these works, the visual categories

to be trained in the training set are fixed. No mechanism is

designed to allow new categories to join in the training incre-

mentally. Only a few research works [7–10] shed light on this

learning issue, which is known as “online deep metric learn-

ing”, or “incremental deep metric learning”. In this scenario,

the trained model has to be updated to adapt to new categories

on the one hand. On the other hand, it is required to maintain

the performance on old categories as much as possible. Due

to the well-known “catastrophic forgetting” [11], these two

competing requirements are hardly balanced.

There are several possible practices for the online deep

metric learning. An intuitive solution is to retrain a new model

based on both the old and new categories, which is also known

as joint training. The major disadvantage of this type of ap-

proaches is that it requires large working memory to store and

replay the past training samples [12, 13]. Such storage and

replay may not be viable in practice. For instance, the sam-

ples of old categories are no longer available for streaming

data. Another way is to fine-tune the trained model with the

samples of new categories only. The embedding space con-

structed based on old categories has been transformed to adapt

new categories, which leads to the considerable degradation

on old tasks. This is essentially the cause of “catastrophic

forgetting”.

In the literature, most of the online learning is addressed

under the context of visual class categorization task. In [12],

the new model is trained based on the samples from both new

and old categories that are produced by a generator. It re-

quires the replay of samples from old categories. Essentially,

it is still a joint training approach based on the generative

model. Recent works [14,15] address this issue under a more

stringent condition where old data is not available during the

training of new tasks. Research works in [7, 8] explore the

online deep metric learning under the same constraint. Al-

though different frameworks have been proposed, they all in-

tend to maintain the distribution of old categories the same as

before in the augmented embedding space. As no old data is

used, different ways have been introduced to recover the fea-

tures produced by the old models. The recovered old features

will facilitate the training of a new model to keep balanced

performance on both old and new tasks.

In all of the aforementioned approaches [7, 8, 14, 15], in

order to maintain the knowledge learned from the old tasks,

the performance in the new tasks has been sacrificed. In this

paper, a novel online deep metric learning approach is pro-

posed based on mutual learning [16], where three models

are involved to strike a balance between stability and plas-

ticity. Two student models learn collaboratively throughout

the training, leading to the better generalization to the new

task [16]. One teacher model transfers previous knowledge to

student models to preserve the performance on the old task.

Moreover, we extend this one-stage online learning frame-

work to the scenario of multiple stages, where new categories

are allowed to join in multiple batches. In order to enable the



mutual learning of knowledge from earlier stages, virtual fea-

tures which are assumed to be produced from previous mod-

els are estimated. This allows the acquired knowledge to be

transferred from previous stages to the current stage without

the replay of old training samples or loading of old models.

2. RELATED WORK

Online deep metric learning has been addressed under differ-

ent assumptions in the literature. In the case that the replay

of old training samples is allowed [9, 10], it is essentially a

variant of joint training. The drawback is that the old training

samples are not always available due to the issue of privacy

concerns and the high maintenance costs. Under the more

widely recognized assumption, the old training samples are

not allowed to join in the training of new tasks. Recent ap-

proaches [7, 8] are all proposed under this assumption. Al-

though different in the design of loss functions, they all regu-

larize the new model with the old ones to preserve the inherent

feature distribution that is learned from the old data.

Usually, knowledge distillation [17] is adopted to distill

the feature information of the old categories from the old

model to the new model [7, 8]. Intuitively, the current model

inherits all the trained categories from the previous models.

The last model preserves the feature distribution of all the

previously trained categories. It is possible to correlate the

feature distribution of all the previous categories based on the

latest model. However, the errors caused by the incremental

learning could be aggregated. The discriminativeness on the

old tasks is therefore eroded gradually. As a result, recov-

ering the feature space of the previous stages is still neces-

sary. In [8], a Maximum Mean Discrepancy (MMD) based

regularization loss is introduced to minimize the discrepancy

between features of newly added categories from the origi-

nal and adaptive networks. In [7], features from models of

previous stages are estimated. The old features are recovered

according to the variation of mAP before and after the train-

ing on the new task. The disadvantages of this approach lie

in two aspects. Firstly, not all the variations in the feature

space can be reflected by the accuracy variation in the image

retrieval task. Moreover, the variation of feature space cannot

simply be modeled as a linear transformation.

Mutual learning [16], as an extension of knowledge dis-

tillation, is an ensemble training strategy to improve gener-

alization by transferring individual knowledge to each other.

In such kind of framework, it is not required to have a fully-

trained teacher model. Instead, two peer student models are

trained and learn from each other via a mutual loss. As the

framework shows no preference over any individual model,

neither old nor new knowledge will dominate over each other.

In this paper, the online deep metric learning is addressed

under the assumption that the replay of old training samples

is not allowed. Different from existing approaches, mutual

learning instead of a teacher-student framework is adopted

for knowledge transfer from one stage to the next. We will

show that it is more suitable for online deep metric learning.

Additionally, a novel feature estimation strategy is proposed.

Based on the models of previous stages, the drifting of feature

space during the training of multiple stages can be captured.

This in turn allows us to recover the feature distribution in old

models more precisely than that of FECD [7].

3. METHOD

3.1. Problem Formulation

In the real world, the scale of learning issues increases in-

crementally on many occasions. For example, for a shop-

ping website, more and more categories of products are

put on sale periodically. It is required the trained model

to be updated periodically. Given one stage of the incre-

mental training is defined as one training task τ , the on-

line deep metric learning is composed of a sequential set

of training tasks T = {τ1, τ2, · · · , τi · · · }. In one train-

ing task τi, it consists of a training set with n new cate-

gories, namely τi = {(Xc
i , y

c
i )|c = 1, 2, ..., n}, where Xc

i

are the set of training samples x. All the samples in Xc
i share

the same class label yci . Without loss of generality, we as-

sume there is no intersection between any two training tasks,

τi ∩ τj = ∅.1 Correspondingly, we expect a series of mod-

els are learned with the given training sets, namely M =
{F1(X

c
1 , w1), F2(X

c
2 , w2), · · · , Fi(X

c
i , wi), · · · }, where wi

are the trained weights of a model Fi. For each trained model

Fi, it is essentially a mapping function, through which a given

image x is mapped to a fixed-length feature vector f i
x.

On the condition that the old training sample replay is not

allowed, model Fi could be trained in two different ways. In

the first way, all the previous models F1, F2, · · · , Fi−1 along

with the training set τi = {(Xc
i , y

c
i )} are available. Alterna-

tively, only model Fi−1 and τi = {(Xc
i , y

c
i )} are available

for training task τi. In our solution, the online deep metric

learning is addressed in the first way. In the following, we

are going to first present a solution for the online deep met-

ric learning that only involves two training tasks. We assume

the initial model Fo(X
c
o , wo) is well trained on task τo with

n old categories (Xc
o , y

c
o). The weights wo already converges

on task τo. Now new task τp with m new categories (Xc
p, y

c
p)

are joined in. This is called “one-task online learning”. Upon

the basis of one-task online learning, the solution to the multi-

task online learning is presented in the section followed.

3.2. One-task Online Learning

A two-student mutual learning framework [16] is adopted in

our one-task online learning. The framework is shown in

Fig. 1. Basically, there are three branches in the framework.

1Otherwise, the training on the overlapped categories is a fine-tuning of

the trained model.



The first branch copies the model trained at the “Initial” stage

and its weights are frozen during the training. Given a training

sample x, it produces a feature, namely fo
x = Fo(x), which is

used as a reference during the training of Fp.

The second branch initially copies weights from the first

branch, namely wp ← wo. It is designed to train a model

Fp that maintains the discriminativeness on the old categories

and adapts to the new categories in τp. The third branch is

a supporting model that is initialized with random weights.

On the one hand, Fs learns the new categories from scratch.

The triplet loss is adopted in Fp and Fs to separately learn the

new categories in task τp. On the other hand, Fs and Fp also

learn from each other, which learned knowledge is shared by

the introduction of mutual loss on both branches. All these

three branches share the same network structure. Fp and Fs

in combination are called student models [16]. Fo is as the

teacher model. The objective for one-task online learning is

L(Xc
p;wo;wp;ws) = λ1Ltriplet(X

c
p;wp)

+ λ1Ltriplet(X
c
p;ws)

+ λ2Lcorr(X
c
p;wo;wp)

+ λ3Lmutual(X
c
p;ws;wp),

(1)

where λ1, λ2, and λ3 are the hyperparameters used for

weighting of different loss functions. In Eqn. 1, λ1 is set

to 1 and λ2 is set to 10 [7]. λ3 is empirically set to 8, of

which leads to the best performance according to our obser-

vation. Ltriplet is the triplet loss using hard sampling strategy.

Lcorr = 1
N

∑
KL(σ(Go), σ(Gp)) is the correlation distilla-

tion loss between Fo and Fp [7]. It applies Kullback-Leibler

divergence between two Gram matrices Go, Gp which are cal-

culated with features extracted by Fo, Fp and normalized with

Softmax function σ(·). Fs also generates a Gram matrix Gs

to regularizes the updating of Fp. The mutual distillation loss

is defined as follows

Lmutual−p =
1

N

∑
KL(σ(Gp), σ(Gs))

Lmutual−s =
1

N

∑
KL(σ(Gs), σ(Gp))

Lmutual =
1

2
(Lmutual−p + Lmutual−s).

(2)

According to Eqn. 1, Fp is required to mimic Fo on the one

hand. On the other hand, Fp also learns from Fs, which is

better trained on the new task τp. Since Fs also learns from

Fp, Fp and Fs converge to similar models as the training con-

tinues. Compared to the popular teacher-student distillation

framework, mutual distillation helps us to find a wider/flatter

robust minimum that generalizes better to the new task. In

the multi-task scenario where tasks are added incrementally,

performing online learning from flat minima will effectively

mitigate forgetting of previous tasks [18]. In the following,

the online deep metric learning is addressed in the multi-task

context based on our one-task online learning solution.

old categories

new categories

Triplet loss

Correlation loss

Mutual loss

Initial

One-task

Copy weights

Frozen

Random initialization

Triplet loss

Triplet loss

n

m

Fig. 1. One-task online learning overview. Initial: A model

Fo is trained on n old categories (Xc
o , y

c
o). One-task: Fo is

frozen as the teacher model and duplicated as the initialization

of the student model Fp. A randomly initialized model Fs as

the supporting student model is employed to solve the new

task with Fp. Only samples of m new categories (Xc
p, y

c
p) are

available during the training.

3.3. Multi-task Online Learning

In practice, new categories arrive in multiple stages. The

model has to be trained periodically. At each stage, the model

is trained on an aggregated new task. Namely, given there are

i − 1 (i − 1 ≥ 2) tasks have been trained, we are now going

to integrate a new group of categories τi = {(Xc
i , y

c
i )|c =

1, 2, ..., n} into the trained model Fi−1 and work out a new

model Fi. Although all the trained categories are kept in

model Fi−1, the feature correlation for early tasks is distorted

due to the aggregated concept drifting, which is more seri-

ous for the earlier tasks. It is, therefore, insufficient to cor-

relate model Fi with Fi−1 for the earlier tasks. Hereby, we

assume all the models trained on the previous tasks are avail-

able. These models will be used to guide the more precise

correlation of Fi with them.

Given a category k in τb (b < i − 1), prototype μb
b,k is

defined as the centroid of kth category in task τb, which is

calculated by the mean of features in this category extracted

by Fb. When our training reaches Stage-i, the distribution of

category k has drifted already. On the one hand, the image

sample x ∈ τi should be fed into Fb to supervise the correla-

tion of Fi to Fb. However, it is computationally expensive to

load all the previous models to support the feature correlation

and there is only one loaded previous model Fi−1. On the

other hand, the feature from Fb cannot be directly estimated

based on Fi−1 since the drift of feature between Fb and Fi−1

is unknown. Hereby, a way to estimate this drift is proposed.

Given a training sample x (x ∈ τi−1), features f b
x and

f i−1
x are extracted from Fb (b = 1· · ·i− 2) and Fi−1 respec-



Datasets
Training set

(#Image/#Class)
Testing set

(#Image/#Class)
Old task New task All Old task New task All

CUB-200 3,504/100 3,544/100 7,048/200 2,360/100 2,380/100 4,740/200
Cars196 4,796/98 4,842/98 9,638/196 3,258/98 3,289/98 6,547/196
DeepFashion2 54,898/10,595 55,532/10,595 110,430/21,190 43,615/10,595 44,095/10,595 87,710/21,190

Table 1. Statistics of three datasets.

tively2. The drift of this individual feature is Δf b−→i−1
x =

f i−1
x − f b

x. Following with [19], the drift of the prototype

μb
b,k at Stage-i− 1 can be estimated as

Δμb−→i−1
b,k =

∑
x S(f

b
x, μ

b
b,k)Δf b−→i−1

x∑
x S(f

b
x, μ

b
b,k)

, x ∈ τi−1, (3)

where S(f b
x, μ

b
b,k) is the Cosine similarity between the fea-

ture f b
x and the learned prototype μb

b,k at Stage-b. As we

can see from Eqn. 3, the overall drift between two prototypes

(μb
b,k, μ

i−1
b,k ) is estimated by the weighted drift of each individ-

ual feature. Therefore, the prototype for category k (k ∈ τb)
at Stage-i− 1 is updated as μi−1

b,k = μb
b,k +Δμb−→i−1

b,k .

During the training of Stage-i, only the previous model

Fi−1 is loaded as the teacher model. For a previous task τb,

all of the prototype drifts Δμb−→i−1
b,k=1···n are calculated and kept

for updating the prototypes μb
b,k=1···n −→ μi−1

b,k=1···n. Given a

training sample x ∈ τi, its feature f b
x on Fb is not extracted

directly as Fb is not loaded. Instead, it is estimated based on

the teacher feature f i−1
x . Namely, given f i−1

x , μi−1
b,k=1···n and

Δμb−→i−1
b,k=1···n, we estimate how much f i−1

x deviates from f b
x

Δf i−1−→b
x = −

∑n
k=1 S(f

i−1
x , μi−1

b,k )Δμb−→i−1
b,k∑n

k=1 S(f
i−1
x , μi−1

b,k )
, k ∈ τb.

(4)

Similar as Eqn. 3, Eqn. 4 calculates a weighted drift for the

feature f i−1
x with respect to all the drifted prototypes and their

drifts at Stage-i − 1. Consequently, virtual feature f̂ b
x is es-

timated as f̂ b
x = f i−1

x + Δf i−1−→b
x . These estimated virtual

features at Stage-b regularize the updates of the current model

Fi by constructing a correlation loss

Lb−→i
corr =

1

N

∑
KL(σ(Gb), σ(Gi)). (5)

As shown in Fig. 2, we further estimate virtual features for

tasks τ1, τ2, · · · , τi−2. With these virtual features, more Gram

matrices are built, which provide more auxiliary knowledge

rather than the only distilled knowledge from Fi−1 for the

current task τi

Lcorr =
∑

t

Lt−→i
corr , t = 1, 2, · · · , i− 1. (6)

During the training, the 3rd term in Eqn. 1 is replaced with

Eqn. 6, which becomes the overall loss function for multi-

task online deep metric learning.

2This operation is undertaken before we train Fi. It is, therefore, offline.

…

Estimating…

Fig. 2. Correlation regularization in multi-task online learn-

ing. Features of prior tasks are estimated from the teacher fea-

ture instead of extracting them with prior models. The Gram

matrices produced by virtual features are used as supervision

for learning the current task.

4. EXPERIMENT

In this section, the effectiveness of our online deep metric

learning approach is studied on three datasets, Caltech-UCSD

Birds 200 (CUB-200) [20], Cars196 [21], and DeepFash-

ion2 [22]. The major information of these three datasets is

summarized in Tab. 1. In the one-task learning case, the train-

ing set and the testing set of three datasets are evenly divided

into two halves. The first half categories are treated as the

old task, and the second half categories are treated as the

new task. The performance of our approach is compared to

LwF [15], EWC [14], FGIR [8], and FECD [7]. For all the

approaches, BN-Inception [23] is adopted as the backbone,

and triplet loss is used as the basic loss function. The re-

sults from FECD [7] are treated as the comparison baseline.

The result from joint training is supplied as a reference, which

learns all the categories as one training task. The performance

is evaluated by Recall@1 for the retrieval on each dataset.

We noticed the experimental flaws pointed out by [24] in

the current literature of deep metric learning. In our experi-

ment design, no sophisticated image augmentation is adopted.

The parameters in Batch-Norm are frozen.

4.1. Performance on One-task Online Learning

The experimental results on three datasets are reported on

Tab. 2. The results for LwF, EWC, and FGIR are cited

from [8] directly. The results from the “Initial” model and

“Fine-tuning” model are reported. The “Initial” model is



Datasets Approaches Old New All

CUB-200

Initial 79.79 55.55 62.76
Fine-tuning 68.81 79.92 69.01

Joint Training 77.67 79.66 76.75
LwF 54.92 75.76 -
EWC 62.03 73.32 -
FGIR 74.41 73.11 -
FECD 77.20 76.09 72.43
Ours 77.29 78.07 73.73

Cars196

Initial 82.23 63.58 -
Fine-tuning 67.77 90.00 -

Joint Training 82.26 92.28 85.15
FECD 80.82 91.21 82.36
Ours 81.06 92.40 83.49

DeepFashion2

Initial 55.79 55.04 -
Fine-tuning 54.81 54.97 -

Joint Training 56.02 56.21 49.66
FECD 56.26 56.49 50.18
Ours 56.33 56.65 50.35

Table 2. Recall@1 (%) on one-task online learning. “Initial”,

“Fine-tuning” and “Joint Training” are as the references.

trained on the old task only. The “Fine-tuning” model is

trained on the old task and then fine-tuned on the new task.

As shown on the table, the initial model and fine-tuned

model perform poorly either on CUB-200 or Cars196. This

does indicate the necessity of an online metric learning ap-

proach to fit in. Among all the online approaches, our ap-

proach outperforms the rest constantly on all three tasks (old,

new, and all). The performance gap between offline and on-

line approaches on DeepFashion2 is minor. This is mainly

because the training task is in large-scale (21,190 categories).

The discriminativeness of the trained model is already satu-

rated after the first half categories have been trained. Never-

theless, our approach shows the constant improvement over

existing approaches, as it shows the good trade-off between

the old and new tasks.

4.2. Performance on Multi-task Online Learning

In order to simulate the online learning of multiple stages, the

second half of the categories in three datasets are divided into

four subsets evenly. So for CUB-200, Cars196, and Deep-

Fashion2, there are 25, 25, and 2,661 new categories respec-

tively joining in the training as a new task at each stage. In

order to be in line with [7], the performance of the model

in multi-task online learning is reported in two ways. Firstly,

the Recall@1 of the final model is reported on each individual

stage. Moreover, the overall performance of the final model

on all the trained categories is reported.

The performance from our approach and LwF [15],

EWC [14], FGIR [8], and FECD [7] are reported in Tab. 3.

As shown from the table, FECD and our approach outper-

form the rest online approaches by a large margin. Com-

pared to FECD, our approach shows constantly better per-

formance in most of the stages. In particular, our approach

outperforms FECD across all the tasks on Cars196 and Deep-

Fashion2 datasets. The superior performance of our approach

owes to both the adoption of mutual learning and novel virtual

Datasets Tasks Joint LwF EWC FGIR FECD Ours

CUB-200

1-100 77.67 33.31 36.82 66.40 73.64 73.90
101-125 82.14 49.83 57.99 70.07 77.21 77.21
126-150 77.83 48.00 50.67 69.00 73.00 75.33
151-175 88.44 67.17 64.15 73.87 81.07 83.75
176-200 87.90 83.70 82.02 85.21 87.23 88.40

1-200 76.75 - - - 67.95 67.91

Cars196

1-98 82.26 - - - 73.76 75.54
99-123 97.13 - - - 94.86 96.42

124-148 98.19 - - - 96.38 96.86
149-173 97.38 - - - 97.26 98.45
174-196 94.52 - - - 95.54 96.56

1-196 85.15 - - - 75.00 76.42

DeepFashion2

1-10595 56.02 - - - 55.16 56.04
10596-13256 67.30 - - - 66.94 67.08
13257-15890 67.62 - - - 67.56 68.33
15891-18558 68.42 - - - 68.22 69.01
18559-21190 66.22 - - - 67.41 67.76

1-21190 49.66 - - - 49.78 50.58

Table 3. Recall@1 (%) on multi-task online learning. “Joint”

(namely Joint Training) serves as the reference.

Datasets Approaches
ResNet-50 Vision Transformer

Old New All Old New All

CUB-200

Initial 79.53 33.53 50.42 83.81 65.00 71.12
Fine-tuning 51.10 79.62 57.81 77.25 80.59 75.46

Joint Training 79.07 78.49 76.50 82.97 81.97 80.57
FECD 75.59 75.08 70.44 82.25 79.03 78.08
Ours 76.69 75.34 70.55 82.16 80.17 78.59

Cars196

Initial 85.21 41.81 57.49 80.63 52.87 60.68
Fine-tuning 62.49 94.44 71.16 57.58 87.81 65.66

Joint Training 84.99 93.86 88.24 77.56 86.01 78.45
FECD 83.36 92.13 83.24 77.53 83.98 75.82
Ours 82.81 93.58 83.78 76.40 85.89 75.93

DeepFashion2

Initial 53.06 50.87 45.65 58.40 58.36 52.51
Fine-tuning 52.70 53.30 46.57 58.37 58.14 52.34

Joint Training 54.03 53.99 47.66 58.40 58.46 52.49
FECD 54.47 54.45 47.94 58.29 58.35 52.37
Ours 54.11 54.88 48.14 58.44 58.44 52.47

Table 4. Ablation study with different backbones on one-task

online learning. Evaluated by Recall@1 (%).

feature estimation for the old models.

As shown on Tab. 5, when the mutual learning is inte-

grated with the feature estimation of the way in FECD [7], the

performance of “FECD(Mutual)” is inferior to ours in most of

the cases. Moreover, it can be observed that FECD(Mutual)

performs better than FECD on the last three tasks, which re-

veals the effectiveness of mutual loss over the conventional

teacher-student model.

4.3. Ablation Study

The performance of our approach is also studied when the

BN-Inception backbone is replaced with ResNet-50 and Vi-

sion Transformer. The study is conducted on both one-task

and multi-task scenarios. The one-task and multi-task online

learning results are shown on Tab. 4 and Tab. 6 respectively.

Although the performance fluctuates considerably for all the

approaches across different backbones, our approach outper-

forms the competing approach FECD in most of the cases. It

confirms the stability of our approach on different backbones.



Tasks Mutual FECD FECD(Mutual) Ours

1-100 71.57 73.64 73.98 73.90
101-125 75.68 77.21 76.19 77.21
126-150 70.50 73.00 73.17 75.33
151-175 81.24 81.07 82.08 83.75
176-200 87.56 87.23 88.07 88.40

1-200 66.12 67.95 67.76 67.91

Table 5. Ablation study with different feature estimation ap-

proaches on CUB-200 on multi-task online learning. Evalu-

ated by Recall@1 (%).

Tasks Joint FECD Ours
1-100 82.97 80.51 81.40

101-125 85.54 81.46 82.48
126-150 77.33 78.17 78.50
151-175 87.60 83.92 86.60
176-200 90.42 88.91 88.40

1-200 80.57 76.62 77.83

Table 6. Ablation study with Vision Transformer as the back-

bone on CUB-200 on multi-task online learning. Recall@1

(%) is the evaluation metric.

5. CONCLUSION

We have presented our solution for online deep metric learn-

ing both for one stage and multiple stage scenarios. Different

from existing solutions, our approach is built upon a mutual

learning structure, which makes a good balance between the

old and new learning tasks. Moreover, a novel virtual feature

estimation approach is proposed. In combination with mutual

learning, superior performance is achieved in the multi-task

learning scenario. In most cases, it even outperforms the joint

training. The effectiveness of our approach is validated on

different datasets and with different network backbones.
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