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ABSTRACT
In this paper, we revisit the decades-old clustering method k-means.
The egg-chicken loop in traditional k-means has been replaced
by a pure stochastic optimization procedure. The optimization is
undertaken from the perspective of each individual sample. Dif-
ferent from existing incremental k-means, an individual sample
is tentatively joined into a new cluster to evaluate its distance to
the corresponding new centroid, in which the contribution from
this sample is accounted. The sample is moved to this new cluster
concretely only after we find the reallocation makes the sample
closer to the new centroid than it is to the current one. Compared
with traditional k-means and other variants, this new procedure
allows the clustering to converge faster to a better local minimum.
This fundamental modification over the k-means loop leads to
the redefinition of a family of k-means variants, such as hierar-
chical k-means, and Sequential k-means. As an extension, a new
target function that minimizes the summation of pairwise distances
within clusters is presented. Under l2-norm, it could be solved un-
der the same stochastic optimization procedure. The re-defined
traditional k-means, hierarchical k-means, as well as Sequential k-
means all show considerable performance improvement over their
traditional counterparts under different settings and on various
types of datasets.

CCS CONCEPTS
• Theory of computation→Unsupervised learning and clus-
tering.
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1 INTRODUCTION
Clustering is a basic processing tool in many areas such as data
mining [32], data compression [15], pattern recognition and com-
puter vision. Since the first k-means methods [18, 19] was proposed
in year 1982, various clustering methods [13] have been proposed
one after another in the last three decades. These methods range
from classic density based methods such as mean shift [8], DB-
SCAN [9], and recent clusterDP [24], to graph based methods such
as spectral clustering [29] and Rank-Order [21], etc. Nevertheless,
k-means [19] remains popular for its efficiency, versatility as well
as simplicity. According to [30], it is recognized among the top ten
most popular methods in data mining.

Givenn data samples in d-dimensional spaceRd , and an integer k,
the clustering task is modeled as a distortion minimization process
in k-means. In one iteration, it assigns n samples to one of k sets
where its corresponding centroid is the closest to the sample. The
minimization target function is given as

Min.
∑

q(xi )=r
d(xi ,Cr ), (1)

where xi ∈ Rd andCr is the centroid of cluster r . In Eqn. 1, function
q(xi ) returns the closest centroid (among k centroids) for sample
xi . There are in general three major steps involved in k-means
iterations. In the initial step, k samples are randomly selected as the
initial centroids. In the assignment step, each sample is assigned to
its closest centroid. In the centroid updating step, each centroid Cr
is updated by taking the average over the assigned samples. The
last two steps are repeated until there is no distortion variation
(Eqn. 1) in the two consecutive iterations. This iteration process is
widely known as the classic “egg-chicken” loop.

Although it is simple and effective, the major issues for this “egg-
chicken” loop are in several aspects. Firstly, the target function is
minimized in an implicit manner. The iteration in its nature mini-
mizes the discrepancy between two consecutive iterations instead
of Eqn. 1. Moreover, the update on the centroid is postponed to the
moment when all the samples are assigned to their closest centroids.
Given t and t + 1 are two consecutive iterations in k-means, the
real target function that is minimized during the iteration is

Min.
∑

q(xi )=r
d(xi ,C(t )

r ). (2)
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After the assignment step, samples assigned to C(t )
r are averaged

to produce C(t+1)
r . Such kind of minimization is inefficient in the

sense that the samples are compared to centroids produced from
previous iteration t. No update happens when a sample is moved
from other clusters to r. However, according to Eqn. 1, the centroids
are expected to be updated as soon as themembership of one sample
changes. Due to the delayed update, the samples are not allowed to
compare with the centroids that reflect the real structure of clusters
at each moment. For the above reasons, usually k-means converges
slowly to a local minimum.

In the literature, several efforts have been devoted to enhancing
the clustering quality. Particularly, the clustering quality is boosted
by a careful seeding scheme [1, 6], for which the centroids are
initialized based upon the data distribution. Recently, the k-means
problem is approximated by a maximization procedure [31, 32].
Encouraging performance is achieved.

In this paper, the k-means clustering that is formulated in Eqn. 1
is addressed by an explicit stochastic minimization process. It turns
out to be simpler as well as better over k-means and many of its
variants. Under the same minimization framework, a family of
k-means variants such as hierarchical k-means and Sequential k-
means is redefined to achieve better performance. Moreover, a new
target function that minimizes the summation of pairwise distances
within each cluster is proposed. Based on the same stochastic op-
timization procedure, the target function is explicitly minimized
with the same time complexity as the conventional k-means.

The remainder of this paper is organized as follows. The reviews
on the representative k-means variants are presented in Section 2.
In Section 3, the driven function derived from the k-means target
function is presented. In addition, a new clustering target function
and its driven function are proposed. The iteration procedures
built upon these two driven functions are accordingly presented.
The possible extensions, convergence and complexity analysis are
presented in Section 4. The effectiveness of the proposed methods
is studied in Section 5. Section 6 concludes the paper.

2 RELATEDWORK
k-means has been widely adopted as a basic tool in data mining [32],
various data preprocessing and pattern recognition [13] mainly due
to its versatility and simplicity. Various improvement schemes are
proposed during the last three decades to boost its performance in
terms of either clustering quality or scalability.

A representative work in improving the clustering quality was
proposed by S. Vassilvitskii et al. [1, 4]. In the method, the initial
centroids are selected to be far from each other to reflect the under-
lying data distribution. It leads to higher clustering quality as well
as faster convergence speed according to [1]. However, k-1 rounds
of scanning over the whole data are necessary to find the initial
centroids. The number of scanning rounds has been successfully
reduced to a few [4] or even fewer [3]. However, all the above im-
provements focus on the initial assignment stage. The “egg-chicken”
loop is still adopted. Therefore the aforementioned pitfalls that are
caused by this loop remain unchanged.

In the literature, there are several efforts aiming to transform the
“egg-chicken” loop into an optimization procedure [27, 28, 31, 32].

In [32], k-means is addressed as a maximization problem under Co-
sine distance. This maximization solution is extended to the whole
l2-space in [31]. While following Hartigan procedure [11], methods
from [27, 28] perform the distortion minimization directly on the
original k-means target function. There are two major differences
in these methods from the other k-means variants. Firstly, a cluster
and its corresponding centroid are updated as soon as the mem-
bership of one sample changes during the iteration. Secondly, the
target function in each update step is monotonically optimized in a
greedy manner. Another interesting discovery from [31] is that the
improvement achieved from careful seeding [1] is minor in com-
parison to that from the modification of the iteration procedure.
Nevertheless, the maximization model in [32] only works under
Cosine distance. Although the methods in [27, 28, 31] are feasible
in the whole l2-space, the optimization converges in a slow pace as
it has to guarantee a monotonic optimization in each update step.
Specifically, a sample is not necessarily assigned to its closest cen-
troid in one update [27, 28], which actually hinders the optimization
process from reaching a better local optimum.

Although the time complexity of k-means is linear to the size
of the dataset, it could become very slow as both k and dataset
size n are large. The processing bottleneck comes from the op-
erations of assigning samples to their closest centroids in every
k-means iteration. As a result, many efforts have been made to
speed-up the sample-to-centroid comparison. Solutions presented
in [7, 22] reduce the comparisons with the support of indexing
structures such as inverted file or KD-tree. However, the former is
only effective for sparse vectors, while the latter performs poorly on
dense high-dimensional vectors. The scalability issue of k-means
is also addressed by subsampling strategy. In methods such as
Mini-Batch [26] and [10], only a small portion of the whole dataset
are sampled to update the cluster centroids. Such methods usu-
ally achieve high speed efficiency at the expense of low clustering
quality.

Besides aforementioned k-means variants, there are still another
two popular variants, namely hierarchical k-means [12] and Sequen-
tial k-means [20]. Hierarchical k-means conducts the clustering in a
top-down hierarchical manner [12, 32, 33]. The clustering solution
is obtained via a sequence of repeated partitions over intermediate
clusters. When the fanout on each hierarchy is 2, it is called as
“bisecting k-means” [32]. The advantages of such scheme are two
folds. Firstly, it is able to produce a dendrogram view of the dataset.
Moreover, the clustering time complexity of k-means is reduced
from O(t ·k ·n·d) to O(t · log(k)·n·d) [31], where t is the number of
iterations. This is significant when n, d, and k are all very large.
The dark side is that clustering performance could be poor as it
breaks Lloyd’s condition [31]. Sequential k-means is also known
as online k-means. It is designed for the case that samples come
in sequentially. The clustering centroid is updated incrementally
as a new sample joins in [20]. Given Cr is the closest centroid to
sample xi and nr is the size of cluster r, the centroid is updated by

Cr = Cr +
xi −Cr
nr + 1

. (3)

Different from the conventional k-means, it is supposed that there
is only one single pass over the data, although it can be trivially
repeated multiple times to reallocate samples until convergence.
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Overall, although the various modifications are made over con-
ventional k-means in the literature, most of the variants still build
upon the “egg-chicken” loop. In this paper, the modification is
undertaken on the “egg-chicken” loop itself. This leads to a funda-
mental change over k-means. It becomes simpler and considerably
better while involving no additional computational costs. More
importantly, this new iteration procedure can be easily implanted
in various k-means variants to boost their performance.

3 K-SUMS CLUSTERING
As discussed in Section 1, the major issues that lie in the conven-
tional k-means loop are that the centroids are not updated timely
and the target function is not explicitly minimized. In the following,
we are going to show it is possible to minimize Eqn. 1 directly by a
stochastic optimization procedure. The optimization is driven by a
function that minimizes Eqn. 1 greedily. This function is called as
driven functionIm . In addition, another target function that aims to
minimize the summation of pairwise distances within each cluster
is presented. Similarly, a driven function given as Is is derived for
this target function. We show that both minimization problems
could be solved by the same stochastic optimization procedure.

To facilitate our discussions in this section and the later, several
variables are introduced. The k clusters produced by a clustering
method are given as {S1, · · · , Sr , · · · , Sk }. Accordingly, the sizes of
the clusters are given as n1, · · · ,nr , · · · ,nk . The composite vector
of one cluster is defined as Dr =

∑
xi ∈Sr xi

1, which is nothing
more than the summation of the samples in one cluster. The cluster
centroid Cr is given as Cr = Dr

nr .
In the following, we are going to first show the driven functions

for two optimization problems. Based on the driven functions, the
novel k-means iteration procedure is presented.

3.1 Driven Function Im
Given a sample xi , it is currently located in cluster Sw , namely
xi ∈ Sw . According to Eqn. 1, its distance to the centroid of Sw is
given as

d(xi ,Cw ) =∥ xi −
Dw
nw

∥2 . (4)

This is also the distortion associated with sample xi that contributes
to Eqn. 1.

Let’s now assume that the structure of cluster Sw has been
changed in the previous iterations as some samples have been
swapped in/out. For this reason, Cw may be no longer the clos-
est centroid for xi . Now we check whether there exists any other
cluster Sv (v � w) that is more appropriate for xi . The distance
between xi and Cv is measured supposing that xi is already joined
into cluster Sv . As a result, the distortion variation for xi is given
as Eqn. 5 for this possible movement.

Im (xi ,w,v) = d(xi ,Cw ) − d(xi ,Cv ),

where Cv =
Dv + xi
nv + 1

.
(5)

Please be noted that Eqn. 5 is different from online k-means [20]
in the sense that xi is supposed to be a member of cluster Sv ,
rather than excluding xi out from Sv in the distance evaluation. In

1Both xi and Dr are column vectors by default.

above equation, as Im (xi ,w,v) > 0, assigning xi to cluster Sv will
decrease the distortion associated with xi , which in turn leads to
the possible decrease in the overall distortion for target function
Eqn. 1. So the sample is moved from the current cluster to Sv as
long as Im (xi ,w,v) is positive and the maximum among all k − 1
tentative re-allocations. The movement of sample xi from cluster
Sw to Sv involves the update of membership for xi as well as the
update on Cv , nv , Cw and nw . Function Im (xi ,w,v) is therefore
called as driven function.

This driven function is essentially different from [27, 28], in
which the distance between xi and Cw is calculated assuming xi
has been removed out from Sw . This subtle difference leads to the
very different interpretations about the effect. FunctionIm (xi ,w,v)
guarantees that xi is placed to its closest centroid. While there is no
guarantee that the movement of xi leads to the decrease in Eqn. 1.
The function in [27, 28] leads to the opposite effects. Namely, the
movement of xi leads to the lower of overall distortion in Eqn. 1,
however xi is not necessarily put into the cluster that is closest to it.
In other words, Im (xi ,w,v) allows the “individual interests” to be
maximized in each movement, while function in [27, 28] guarantees
the monotonic increase of “general interests” in each movement.
As analyzed in Section 4.2, the former is less likely being trapped
in a local optimum and therefore performs considerably better as
is revealed in the experiments.

To simplify the computation, the distance between xi and Cw is
given as

d(xi ,Cw ) = ∥ nw ·xi − Dw ∥2
n2w

. (6)

Accordingly, the distance between xi and Cv is given as

d(xi ,Cv ) =
∥ nv ·xi − Dv ∥2

(nv + 1)2
. (7)

In some scenarios, wemay use Cosine distance instead of l2-norm
to measure the distance between samples and the distance between
samples and the centroids. One would have the following equations
to measure the distance between sample xi and centroid Cw and
Cv respectively.

cos(xi ,Cw ) =
x ′i ·Dw√

x ′i ·xi ·
√
D ′
w ·Dw

(8)

cos(xi ,Cv ) =
x ′i ·Dv + x

′
i ·xi√

x ′i ·xi ·
√
D ′
v ·Dv + 2x ′i ·Dv + x

′
i ·xi

(9)

Since the l2-norm of xi could be pre-computed, the terms we should
consider in Eqn. 8 and Eqn. 9 are the inner-products between xi
and the composite vectors, and the l2-norms of composite vectors
Dw and Dv .

It is clear to see that Cw and Cv are not involved in any case
of the distance computation. Only Dr s and nr s are required. The
composite vectors Dr s are nothing more than k summations of
samples within k clusters. To this end, the “means” are replaced by
“sums”. For this reason, our new clustering method is called as k-
sums from now on. Please be noted that it is possible to formulate
the driven function (Eqn. 5) in terms of centroids. However, the
computing cost of updating centroids turns out to be much higher
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than updating only the composite vectors as the update operation
is frequently undertaken in the iteration.

3.2 Driven Function Is
In some scenarios, defining the centroid for a clustering problem
would be hard or even impossible. For instance, the sample vec-
tors could not be averaged when the values in each data dimen-
sion/property are discrete. A good case is the gender of a person.
This is where the clustering method such as PAM [16] comes, in
which cluster modes instead of centroids are defined. Moreover, the
criterion of being a cluster may change. Instead of minimizing sum-
mations of distances to a mode/centroid, we may need to minimize
the intra-distances within each cluster. This leads to a new target
function. Namely, the target function is simply defined as

Min.
k∑
r=1

∑
i , j ∈Sr&i<j

d(xi , x j ). (10)

Notice that this minimization target function is different from I2
proposed in [32], because it aims to minimize the weighted intra-
distances within each cluster. In [32], the average pairwise distance
within each cluster is weighted by the size of a cluster. To seek
for the optimal solution for Eqn. 10, intuitively one has to try out
all the possible combinations of the samples in one cluster. This
is unfortunately NP-hard as PAM [16]. As a consequence, we only
seek for a local minimal solution to this problem. In particular,
in l2-space, this target function can be addressed with a greedy
procedure in a very efficient fashion.

Given that xi ∈ Sw and the distance between samples is mea-
sured by l2-norm, the overall distance between samplexi and cluster
Sw is defined as

d(xi , Sw ) =
∑

x j ∈Sw
∥ xi − x j ∥2, (11)

which is the summation of distances between sample xi and each
sample in Sw . Eqn. 11 can be further simplified as

d(xi , Sw ) = nw ·x ′i ·xi − 2·x ′i ·Dw +
∑

x j ∈Sw
x ′j ·x j , (12)

where Dw is the composite vector of cluster Sw . Eqn. 12 can be
efficiently calculated given the l2-norms of each sample can be
pre-computed and kept in a look-up table. The second term is the
inner-product between sample xi and the composite vector, which
is comparable to calculating the distance between sample xi and a
centroid in the conventional k-means model. Given sample vectors
are l2-normalized, Eqn. 12 is further simplified as

d(xi , Sw ) = 2·nw − 2·x ′i ·Dw . (13)

Eqn. 13 could be used as Cosine distance when we want to adopt
Cosine to measure the distances between vectors. They are inter-
changable as the vectors are l2-normalized.

Now let’s consider the similar driven strategy that we derive for
target function Eqn. 1. Given sample xi ∈ Sw , we consider whether
it could be better if we put xi into Sv . The distance between xi and

Algorithm 1: k-sums driven by Im
Data: Input: Xd×n , k
Result: Output: S1, · · ·, Sr , · · ·, Sk

1 Lables[1, · · · ,n]← 0;
2 Assign each xi ∈ X with a random cluster label;
3 Calculate D1, · · ·,Dr , · · ·,Dk and n1, · · ·,nr , · · ·,nk ;
4 while not convergent do
5 for each xi ∈ X (in random order) do
6 w ←Labels[i];
7 Seek Sv that Im (xi ,w,v) reaches the maximum;
8 if Im (xi ,w,v) > 0 then
9 Lables[i]← v ;

10 Dw ← Dw − xi ; nw ← nw − 1;
11 Dv ← Dv + xi ; nv ← nv + 1;
12 end
13 end
14 end

Sv is given as

d(xi , Sv ) = (nv + 1)·x ′i ·xi − 2·x ′i ·(Dv + xi )

+
∑

x j ∈Sv&j�i
x ′j ·x j + x ′i ·xi

= nv ·x ′i ·xi − 2·x ′i ·Dv +
∑

x j ∈Sv&j�i
x ′j ·x j .

(14)

Comparing distance d(xi , Sv ) to d(xi , Sw ), it is easy to judge
whether such movement is “profitable” for xi . Namely, we work
out the driven function to minimize target function Eqn. 10 as

Is (xi ,w,v) = d(xi , Sw ) − d(xi , Sv ). (15)

As shown in Eqn. 12 and Eqn. 14, it is unnecessary to maintain Cr .
Similar as driven function Im , one only needs to maintain Dr s and
nr s during the optimization for computational efficiency.

In the minimization step, we check Eqn. 15 with all k −1 clusters,
and move xi to the cluster where Is (xi ,w,v) is positive and the
maximum. Notice that each such kind of movement will lead to
a steady decrease in the target function (Eqn. 10). While it is not
guaranteed that Eqn. 1 steadily decreases when driven by Im .

3.3 Stochastic Optimization Procedure
With two driven functions Im and Is derived in the above sections,
it becomes natural to work out the clustering iteration. Since the
optimization procedures for Im and Is are similar, let’s take Im
as an example. In one step of the iteration, sample xi is randomly
selected, then it is checkedwithk−1 clusters to seek for themaximal
Im . A sample reallocation is undertaken as long as Im reaches the
maximum and is positive. The details of the clustering method k-
sums are presented in Alg. 1, which is in general similar as [28, 31]
yet driven by different function.

As shown in Alg. 1, following the practice in [31], no initial cen-
troid selection or initial sample-to-centroid assignment is involved
in k-sums. Each sample is assigned with a random cluster label.
With these random labels, it is possible to calculate Dr s and nr s
(Alg. 1, Line 3). At the beginning, the samples from different clusters
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are mixed up with each other at the initial stages [31]. However,
the boundaries between clusters become clearer after only a few
iterations. In each iteration, samples are evaluated in random order
with Im . The movement happens when it is the most appropriate
(Alg. 1, Lines 8-12). In the iteration procedure, Dr s instead of Cr s
are maintained and updated. Since this procedure is driven by Im ,
it is given as k-sums-Im .

Different from optimization procedure proposed in [31], k-sums
aims to minimize the original target function of k-means instead of
its approximation. The conventional k-means clustering is trans-
formed into a pure stochastic minimization process with the target
function unchanged. Additionally, our minimization procedure is
also essentially different from methods in [27, 28], for which the
clustering distortion drops monotonically after each movement. In
our method, when moving xi from Sw to Sv , it is the most “prof-
itable” act for “individual” xi , however this might not be true for
other members in Sv and Sw . As a result, there will be a few bumps
in the trend of distortion, while it still shows a general decreasing
trend. In contrast, methods in [27, 28, 31] seek for the movement
that leads to the decrease of overall distortion in each step. As re-
vealed in the later experiments, the optimization driven by seeking
for the better of “individual interests” instead of “general interests”
converges to a better optimum in most of the cases. When Im is
replaced by Is in Alg. 1, it becomes the clustering method driven
by Is , which is given as k-sums-Is .

Fig. 1 shows the function value variations after each step (Alg. 1,
Lines 6-12) on four consecutive iterations driven by Im and Is re-
spectively on a SIFT image feature dataset [14]. According to our
observation, the distortions from k-sums-Im decrease steadily as a
general trend. However, the function value of Eqn. 1 may increase
in some steps in one round of iteration. This is visible in the zoom-
in view of one iteration curve (Fig. 1(b)). This is mainly because
k-sums-Im is driven by “individual interests” instead of “general
interests”. Only the distortion associated with a sample is decreased
in one movement when driven by Im . The movement may lead
to the increase of Eqn. 1 temporarily. However, this invokes other
samples (from all clusters) to seek for a better reallocation in the
following steps. As a result, the distortion still decreases steadily.
The bumps are not observed with k-sums-Is in Fig. 1(b) since one
movement driven by Is leads to the steady decrease in both indi-
vidual distance to a cluster and the overall intra-cluster distances of
Eqn. 10. The function curve of k-sums-Is that is measured by Eqn. 1
is shown in Fig. 1(d). The curve shows a general trend of steady
decrease. This does indicate two target functions are correlated to
some extent. However, they are essentially different given the fact
that the decreasing pace in Fig. 1(d) is considerably slower than
that of Fig. 1(a).

4 EXTENSIONS AND DISCUSSIONS OVER
K-SUMS

4.1 k-means Variants Driven by Optimization
As presented in Section 3, our modification on k-means is simple but
fundamental. Theoretically speaking, many k-means variants that
are built upon the “egg-chicken” loop could be optimized following
the framework of k-sums. In this section, the modification on two

popular k-means variants is presented. We first consider bisecting k-
means. Typically, it produces k clusters by repeatedly bisecting the
intermediate clusters into two [32]. On each bisecting step, k-means
is called. As a result, when k-sums is adopted in the bisecting step,
it becomes bisecting k-sums. Moreover, k-sums driven by either Is
or Im is feasible. Alg. 2 shows the details of the bisecting k-sums.

Algorithm 2: bisecting k-sums
Data: Input: matrix Xd×n , k
Result: Output: S1, · · ·, Sr , · · ·, Sk

1 S1 ← 1· · ·n;
2 Push S1 into a priority queue Q;
3 i ← 1;
4 while i < k do
5 Pop cluster St from Q;
6 Call Alg. 1 to cluster St into {S∗t , Si+1};
7 Push S∗t , Si+1 into queue Q;
8 i ← i + 1;
9 end

As shown in Alg. 2, Alg. 1 is called to partition a cluster St into
two in each step. There could be several ways to decide which
cluster St to be partitioned. Following the practice in [32], cluster
with the largest size is selected each time from queue Q in our
implementation2.

The second k-means variant we consider to redefine is Sequential
k-means, which scans the data only one round and runs online.
Given Eqn. 1 is adopted as the target function for online k-means,
the update function is revised as

Dr = Dr + xi , (16)

given that d(xi ,Cr ) = ∥nr ·xi−Dr ∥2
(nr+1)2 is the minimum among k clus-

ters. The similar way applies to the case when target function
Eqn. 10 is adopted. This revised online clustering method is given
as Sequential k-sums. Different from conventional Sequential k-
means, the distance between sample xi and Cr is calculated assum-
ing that xi is already joined in Sr . The codes of our implementation
about k-sums and its variants are available at GitHub3.

4.2 Complexity, Convergence and Optimality
Analysis

It is apparent to see the time complexity of Alg. 1 is on the same par
as conventional k-means. Compared to k-means, k-sums actually
saves up the cost of initial sample-to-centroid assignment, which
is equivalent to one round of iteration. In contrast, the time com-
plexity of Hartigan procedure in [27, 28] is much higher than it is
supposed to be as the optimization is defined on cluster centroids.
Unlike conventional k-means “egg-chicken” loop, the centroid up-
date is a frequent operation in all incremental optimization based
methods, namely approaches from [27, 28] and k-sums. To its worse
case, the centroids will be updated n times in one round. k-sums is
computationally more efficient in the sense that it operates on the

2In practice, one may choose to split the most loose one.
3https://github.com/cc-cyber/k-sums.
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Figure 1: The target function variation curves produced on 100K SIFT data by Alg. 1 on four consecutive iterations (4∼7). Alg. 1
is driven by Im (figure (a)) and Is (figure (c)) respectively. The function value measured by Eqn. 1 when Alg. 1 is driven by Is
is shown in figure (d). All function values are normalized by the size of dataset.

composite vectors, on which only addition/subtraction operations
are involved.

Since Alg. 1 could be driven by either Im or Is , the convergence
analysis on Alg. 1 is divided into two cases. Let’s first consider
the case as it is driven by Im . Essentially the iteration is driven
by the motivation that xi seeks for the better allocation such that
d(xi ,Cv ) < d(xi ,Cw ), where xi ∈ Sw and is tentatively put into
Sv . Since d(xi ,Cv ) ≥ 0, there will be a moment for any sample xi
(d(xi ,Cv ) = 0 to its best) that no movement could take place. At
this moment, Alg. 1 converges.

When Alg. 1 is driven by Is , it is clear that target function
Eqn.10 decreases monotonically after each movement. Given func-
tion value Eqn.10 after eachmovement is F (t ), following inequation
series holds.

F (1) > F (2) > · · · > F (t ) > · · · ≥ F o, (17)

where F o is the function value as we reach the optimal solution. As
a result, the monotonically decreasing function is lower-bounded
by F o . Apparently, it converges.

k-sums optimization driven either by Im or Is is greedy. Each
optimization step is triggered by the decrease in the distance from
an individual sample to its closest centroid (with Im ) or cluster
(with Is ). Particularly for k-sums-Im , this is the essential difference
as well as the advantage of our method over methods built upon
Hartigan procedure [27, 28] and k-means#. The minimization in
k-sums-Im is driven by the “individual interests” of each sample
instead of the “general interests” that is regulated by the Hartigan
procedure [27, 28] . The latter imposes implicitly much tighter
constraint over the movement of one sample. In these methods, one
has to consider the impact to other members from two involved
clusters, namely Sw and Sv . The “consensus” has to be reached
among members from two clusters before sample xi is allowed to
move from one to another. In contrast, in k-sums-Im sample xi is
free to move as long as the new centroid is closer to it than the
previous is. It is no need to care about whether this movement is
“beneficial” to the other members from cluster Sw or Sv . Due to
the tight constraint, the existing methods [27, 28, 31] tend to be
trapped in a local minimum easier than k-sums-Im .

It is possible that other samples in the two involved clusters
become further from their centroids after the movement. However,
they are therefore invoked to move to other closer clusters under
the same rule. As a result, the seemingly “selfish” act allows each
sample to finally find its closest centroid. Target function Eqn. 1 is
a simple linear summation over distances of each individual to its
assigned centroid. The lower of each individual distance leads to
the lower overall function value.

Similar as k-means, there is no significant change in the structure
of the clusters after a few iterations for k-sums. Although it turns
out to be better than k-means and many of its variants, it only
reaches a local minimum as k-means, k-means++ as well as k-
means#.

5 EXPERIMENTS
In this section, the effectiveness of proposed clustering method,
namely k-sums is studied in comparison to k-means and its rep-
resentative variants. They include k-means++ [1], LVQ [17], the
method based on Hartigan procedure (given as “Hartigan” in the
following) [28], k-means# [31], incremental k-means (IKM) [32], Se-
quential k-means [20], Mini-Batch [26] and bisecting k-means [32].
For Sequential k-means and our redefined Sequential k-sums, there
is only one single pass over the whole dataset.

Following the practice in [2], the average distortion (or mean
squared error [14]) is adopted to evaluate the clustering quality. It
is nothing more than the function value of Eqn. 1 that is averaged
by the size of dataset. The lower the distortion is, the better the
clustering quality is.

Em =
∑
q(xi )=r ∥ Cr − xi ∥2

n
(18)

Similarly, Es is introduced to evaluate towhat extent target function
Eqn. 10 is minimized.

Es =
∑k
r=1

∑
i , j ∈Sr&i<j ∥ xi − x j ∥2

n
(19)

Twenty-one datasets are used in the evaluation. The brief in-
formation about these datasets is summarized in Tab. 1. In the
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Figure 2: The significance test for k-sums-Im and k-sums-Is . The function values measured by Em (figure (a)) and Es (figure
(b)) are calculated after each iteration. 128 runs are carried out for eachmethod on SIFT100K. The candle chart is plotted based
on Em and Es of 128 runs from each iteration. Notice that all the k-means variants minimize Eqn. 1 except for k-sums-Is . The
function values measured by Em and Es that are produced by Sequential k-means and Sequential k-sums are shown in figure
(c) and (d) respectively.

Table 1: Overview of Datasets

Datasets Scale Dim.
SIFT100K [14] 1 × 104 128
SIFT1M [14] 1 × 106 128
GloVe1M [23] 1.1 × 106 100
MSD [25] 0.99 × 106 60
SUSY [5] 5 × 106 19
UMD [32] [878∼9, 558] [2, 880∼36, 306]

first experiment, dataset SIFT100K [14] is adopted to perform sig-
nificance test to confirm that the improvement achieved by our
approach is not by random. In the second experiment, k-sums is
tested on four large-scale datasets. The types of data range from
image local features (SIFT1M) [14], vectorized text word features
(GloVe1M) [23], to audio features (MSD) [25] and event descriptions
(SUSY) [5]. In the last experiment, 15 document datasets (UMD) [32]
are adopted. The documents are represented with TF/IDF model
and are l2-normalized. On this document clustering task, the per-
formance is evaluated by entropy [32].

Entropy =
k∑
r=1

nr
n

1
log c

∗
c∑
i=1

nir
nr

∗ log nir
nr
, (20)

where c is the number of classes in the ground-truth, and nir is
the size of intersection between class i and cluster Sr . The entropy
obtained from 15 document datasets are averaged for each method.

5.1 Significance Test
The initialization on k-means clustering is based on either random
seeding or random label assignment. Moreover, the optimization
is a stochastic procedure for the methods such as IKM, k-means#,
Hartigan, and k-sums. For these two reasons, the clustering results
from k-means and its variants vary from one run to another. The
first experiment investigates the general performance trends of

k-sums-Im and k-sums-Is and the variations across different runs.
The experiment is conducted on SIFT100K. For each considered
method, 128 runs are undertaken. The cluster number k is fixed to
1,024. Em and Es are calculated after one iteration.

The candle charts for four methods from Em and Es are shown
in Fig. 2(a) and Fig. 2(b) respectively. The trend curves produced by
Sequential k-means and Sequential k-sums with respect to Em and
Es are shown in Fig. 2(c) and Fig. 2(d). As shown from the figure,
k-sums-Im and k-sums-Is achieve the lowest function score with
respect to their target functions after 3 iterations. The performance
gap between our methods and the rest is much more significant
than the possible variations between different runs. As k-sums-Is
is the only method that aims to minimize target function Eqn. 10,
a wide performance gap is observed in Fig. 2(b). The performance
from Hartigan nearly overlaps with that of k-means#. Although
k-means# addresses k-means clustering as a maximization problem,
it behaves similarly as Hartigan [28] as both of them incrementally
optimize the k-means target function in a monotonic manner. The
performance gap between k-means and k-means++ is nearly invis-
ible from Fig. 2(a). This indicates the improvement from seeding
scheme is limited. In terms of online k-means, all the curves given
by Em and Es rise up as more and more samples join in. This is
because the overall function values of Em and Es increase as more
samples are incorporated in the equation. As shown in Fig. 2(c)
and Fig. 2(d), Sequential k-sums show the lowest function value in
each iteration with respect to the corresponding target function.
Moreover, they demonstrate a much narrower variation range than
that of Sequential k-means.

5.2 Quality Evaluation on Various Data Types
In the second experiment, four large-scale datasets of various data
types are adopted in the evaluation. They are SIFT1M, GloVe1M,
MSD and SUSY. The general trends of Em and Es from k-means#,
Hartigan, k-means++, k-sums-Im and k-sums-Is are studied on
these datasets. Since k-means++ usually shows better clustering
quality than k-means and many other variants, it is treated as the

Full Paper Track  CIKM ’21, November 1–5, 2021, Virtual Event, Australia

2685



 39800

 40000

 40200

 40400

 40600

 40800

 10  20  30  40  50  60  70  80

Av
er

ag
e 

D
is

to
rti

on

Iteration

SIFT1M

k-means++
k-means#
Hartigan
k-sums-Im
k-sums-Is

(a)

 20.1

 20.2

 20.3

 20.4

 20.5

 20.6

 10  20  30  40  50  60  70  80

Av
er

ag
e 

D
is

to
rti

on

Iteration

Glove1M

k-means++
k-means#
Hartigan
k-sums-Im
k-sums-Is

(b)

 29.6

 29.8

 30

 30.2

 30.4

 30.6

 30.8

 10  20  30  40  50  60  70  80

Av
er

ag
e 

D
is

to
rti

on

Iteration

MSD

k-means++
k-means#
Hartigan
k-sums-Im
k-sums-Is

(c)

 1.105

 1.11

 1.115

 1.12

 1.125

 10  20  30  40  50  60  70  80

Av
er

ag
e 

D
is

to
rti

on

Iteration

SUSY

k-means++
k-means#
Hartigan
k-sums-Im
k-sums-Is

(d)

Figure 3: The general trend of function values measured by
Em .

comparison baseline. k is fixed to 10,000 for all the methods on each
dataset. According to the previous experiment, the performance
gap between the methods is more significant than the possible
variations between different runs. It is therefore valid to only show
the distortion curve of one run. The curves from Em and Es are
shown in Fig. 3 and Fig. 4 respectively.

As shown in the figures, k-sums remains the best method with
respect to two evaluation criterion, which is consistent with the
previous observations. The function values from k-sums decrease
at a much faster pace than the other three methods. Moreover, the
performance gap gets wider as the number of iterations grows for
k-sums-Im . This basically indicates that k-sums less likely gets
trapped in a local minimum when driven by Im . In contrast, the
rankings of cluster quality from k-means++ and k-means# vary
across different datasets. Generally the performance becomes satu-
rated within 30 iterations for both of them. Similar as the previous
observation, the performance trend from k-means# and Hartigan
remains similar. k-sums-Is shows poorer performance than the
others in Fig. 3. However, it converges quickly to a much better
local optimum than the rest when measured by Es (shown in Fig. 4).
It is the only method that is designed to minimize target function
Eqn. 10. This indicates two target functions considered in the paper
are correlated yet still essentially different.

5.3 Document Clustering
In the third experiment, the performance of our methods is studied
on the classic document clustering task. Fifteen datasets from UMD
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Figure 4: The general trend of function values measured by
Es .

are adopted. In the experiments, k-means and the other five variants
are considered. Cosine distance is adopted for all the methods. For
the methods such as k-means, k-means++, k-means# and k-sums,
they could be undertaken in a bisecting manner, namely in the way
of Alg. 2. As a result, the performance under the bisecting strategy
for these methods is also reported. For each method, k is set to
5, 10, 15 and 20 on each dataset. Following the practice in [32],
the clustering result of one method is selected from 10 runs with
the lowest Em or Es for k-sums-Is . The average entropies of each
method with both the direct k-way and the bisecting clustering are
reported on Tab. 2(a) and Tab. 2(b) respectively.

As shown on the tables, k-sums driven by Im and Is outperform
other methods considerably on the direct k-way case. On the bisect-
ing case, k-sums-Im still shows the best results, while k-sums-Is
shows similar performance as k-means#. k-sums-Is shows rela-
tively poor performance because it converges quickly and therefore
is unable to reach a better local optimum in the bisecting case. IKM
is the only method that shows close performance with k-sums. Un-
fortunately, it only works under Cosine distance [31, 32]. k-means#
and Hartigan perform similarly as they essentially optimize the
target function in the similar manner. As explained in Section 4.2,
both of them tend to be trapped in a local optimum easier than
k-sums due to the tight constraint over the sample reallocation.

6 CONCLUSION
In this paper, the simple “egg-chicken” loop in k-means has been
modified to an even simpler stochastic optimization procedure.
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Table 2: Clustering performance on UMD 15 document
datasets

(a) Clustering performance by direct k-way

k=5 k=10 k=15 k=20
k-means [18] 0.539 0.443 0.402 0.387
k-means++ [1] 0.550 0.441 0.403 0.389
Mini-Batch [26] 0.585 0.488 0.469 0.475
LVQ [17] 0.800 0.761 0.681 0.674
k-means# [31] 0.552 0.442 0.388 0.368
Hartigan [28] 0.451 0.358 0.331 0.307
IKM [32] 0.465 0.401 0.366 0.358
k-sums-Im 0.452 0.362 0.330 0.312
k-sums-Is 0.445 0.357 0.325 0.308

(b) Clustering performance by bisecting

k=5 k=10 k=15 k=20
k-means [18] 0.532 0.438 0.410 0.373
k-means++ [1] 0.507 0.422 0.400 0.379
k-means# [31] 0.514 0.388 0.353 0.329
IKM [32] 0.465 0.390 0.353 0.330
k-sums-Im 0.449 0.367 0.335 0.311
k-sums-Is 0.494 0.408 0.359 0.345

Different from k-means and many of its variants, the distortion
minimization is driven by seeking for the better reallocation of
each individual sample. The clusters are updated as soon as the
reallocation of one sample leads to the lower distortion that is asso-
ciated with the sample. A family of k-means variants are redefined
under this optimization framework and show considerably better
clustering quality. Moreover, another target function is proposed to
handle the case that cluster centroid/mode cannot be defined. It is
then solved under the same optimization procedure. To generalize
this new clustering model to the generic metric space is our future
research direction.
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