Multimedia Technology

Lecture 8: Feature Matching and Aggregation

Lecturer: Dr. Wan-Lei Zhao Autumn Semester 2024

Email: wlzhao@xmu.edu.cn, copyrights are fully reserved by the author. = > = - ? ...

	w	lan-	Lei	Zh	ac	l
--	---	------	-----	----	----	---

Outline

- 2 Bag-of visual Word Encoding
- 3 Min-Hash Approach
- 4 Vector of Locally Aggregated Descriptor

5 References

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	2 / 49
	4		E

Introduction: opening discussion

- Image features
 - Global Features: Color-Moment, Color-Histogram
 - Descriptor: SIFT and SURF
 - Deep local Features: DELF, R-MAC
- We are now ready to compare images by their features

Introduction: image near-duplicates (1)

• More than **22%** of web images have similar/near-duplicate counterparts

Wan-Lei Zhao

Advantages of image local feature

- Robust to transformations such as scaling, rotation, cropping and etc.
- Invariant to flipping
- One-to-one region correspondence between sub-regions is established

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Scale of the Problem: Image Case

- The Complexity of Feature Matching
 - Given 1,500 features are extracted from one image
 - One feature is of 128 dimensions
 - $1500 \times 128 \times 4 = 768,000$ bytes
 - Given there are 10 billions of images in the database
 - Memory cost is: 768×10^4 G bytes
 - Time for one query: $0.2 \times 10^{10} s = 63.4 years$

Introduction: video near-duplicate (2)

• Different versions of "Lion Sleeps Tonight"

(a) a. mixture of several videos; b. color changes;c. frame dropping; d. camcoding; e. superimpose texts; f. superimpose logos

The Scale of the Problem: Video Case

The Compleixty of Video Feature Matching

- Given 10 minutes video
- Two frames/second, $2 \times 60 \times 10 = 1200$
- One feature is extracted from one frame
- One feature is of 128 dimensions
- $1200 \times 128 \times 4 = 614,400$ bytes
- Given there are 100 millions of videos in the database
- Memory cost is: 61.44T bytes
- Time cost for one query: $0.2 \times 10^8 s = 231.48 days$

Related Works: Image near-duplicate Retrieval/Detection

9/49

Outline

2 Bag-of visual Word Encoding

3 Min-Hash Approach

4 Vector of Locally Aggregated Descriptor

5 References

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	10 / 49

Why BoW is preferred over point-to-point matching

Challenges

- Speed efficiency: 1 day for cross-matching within 600 images
- Memory efficiency: the size of feature > the size of image
- For **1,000** hours web-videos, more than **600,000** images are extracted, computation costs are counted in **CPU years**

Opportunities

- Video is composed by image sequence with certain temporal order and rate (e.g., 25fps)
- Approach for ND image retrieval/detection is extensible to ND video retrieval/detection
- Bag-of visual words (BoW) framework [4]

Bag-of visual words (BoW) Framework

- Advantages: inverted file can be leveraged, matching becomes highly efficient
 - Only 0.62s for 1 query against 1M images, while OOS takes 139 hours
- Disadvantages: introduces many false matches, loss of correct matches

BoW Offline Quantization: explained (1)

- Given image features (say SIFTs)
- Given vocabulary trained by K-means
- Quantization searches nearest neighbor for each feature in the vocabulary

BoW Offline Quantization: explained (2)

- Given image features (say SIFTs)
- Given vocabulary trained by K-means
- We count the term frequency (TF) that each word appears in the image

BoW Offline Quantization: explained (3)

- Given image features (say SIFTs)
- Given vocabulary trained by K-means
- We count the term frequency (TF) that each word appears in the image

BoW Offline Quantization: explained (4)

• Given image features (say SIFTs)

- Given vocabulary trained by K-means
- We count the term frequency (TF) that each word appears in the image

BoW Offline Quantization: explained (5)

- Given image features (say SIFTs)
- Given vocabulary trained by K-means
- We count the term frequency (TF) that each word appears in the image

BoW Offline Quantization: comments

- BoW quantization is a typical vector quantization
- It maps a D-dimensional vector into an integer
- Good news:

if the vocabulary is large enough, the resulting vector is very sparse

• Bad news: because of quantization, many details get lost

Online Retrieval with BoW: explained

• Local features of an image are represented by TF/IDF of visual words

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	19 / 49
		・ロ・・西・・田・・田・	E

Noisy feature matches from BoW matching

- How to remove the false matches as many as possible?
- Principle
 - **1** Integratable with BoW framework
 - 2 As efficient as possible
- Current solution
 - Hamming embedding [6] (visual verification)
 - Weak Geometric Constraint [6] (geometric verification)

Hamming Embedding: the idea

- BoVW is modeled as Voronoi diagram in feature space
- Feature points in one cell are with zero distances to each other
- Hamming Embedding helps to estimate the intra-distance efficiently

Hamming Embedding: explained

- Hamming Embedding helps to estimate the intra-distance efficiently
- This Hamming signature is used to prune noisy matches
- A simple idea is to prune matches hold Hamming distance larger than a threshold

Hamming Embedding: offline training

• Step 1. Produce projection matrix

- 1 Draw a *D*×*D* white Gausian noise matrix **M**
- 2 Perform QR decomposition on M
- 3 Select first K vector from Q to form projection matrix P
- Step 2. Train median for each visual word
 - 1 Foreach training SIFT f_i do
 - Quantize f_i into visual word w_j
 - **3** Project f_i by $p_i = f_i^T P$
 - 4 Join p_i to U_j
 - 6 endFor
 - 6 Find median *m_j* for each *U_j*

3 k 4 3 k -

Hamming Embedding: online quantization (1)

- Online quantization for one image
 - **1** Foreach SIFT f_i in one image
 - 2 Quantize f_i into visual word w_i
 - **3** Project f_i by $p_i = f_i^T P$
 - Binarize p_i based on m_j
 - 6 endFor

$$b(p_{ik}) = \begin{cases} 1 & p_{ik} > m_{jk} \\ 0 & p_{ik} <= m_{jk} \end{cases}$$

- Above procedure quantizes SIFT features in one image
- A binary signature with **K** bits is generated for each SIFT feature
- This signature is used for verification

Wan-Lei	Zhao
---------	------

Hamming Embedding: online quantization (2)

- A binary signature is attached to each quantized feature
- It is later used to verify the visual word match
- It introduces extra memory cost

Outline

- Overview about Similar Image Retrieval & Detection
- 2 Bag-of visual Word Encoding
- 3 Min-Hash Approach
- 4 Vector of Locally Aggregated Descriptor

5 References

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	26 / 49
	4	日本本部本本語を本語を	■

Background: image-linking within big collection

- Build hyper-links between images in the web
- Find near-duplicate shots in video collections

- Compute a matrix with $N \times N$ entries
- Requires huge memory and computationally intensive!!
- Called as image-linking problem

Motivation: min-Hash

- The probability of key collision (equal key value) equals to J
- The complexity of computing J(X, Y) is O(nlog(n))
- Only O(M) if min-Hash is adopted!!

イロト イヨト イヨト

How well min-Hash is??

- The more hash functions we use, the better approximation we get
- However the higher the cost it takes

Wan-Lei Zhao	Multimedia Technology	Αι	igust 30	, 2024		29 / 49
	4		1 = 1	1 = 1	-	*) 4 (*

min-Hash sketches

• Combine keys into sketch

- Reduce the complexity further
- Equivalent to a co-occurrence constraint
- Degraded estimation (potential matches have been missed)
- The sketch size is set to 2 in our experiments

Wan-Lei Zhao

Multimedia Technology

August 30, 2024

Sim-min-Hash: the motivation

 $X = \{A, B, C\}$ $Y = \{B, C, E\}$

 $J(X,Y) = \frac{|X \cap Y|}{|X \cup Y|}$

Random permutation						
$\pi_j(.)$	А	В	С	D	Е	
$\pi_1(.)$	3	5	2	1	4	
$\pi_2(.)$	1	2	5	3	4	
$\boldsymbol{\pi_3(.)}$	2	1	4	5	3	
$\pi_4(.)$	5	1	3	4	2	

$$\begin{tabular}{|c|c|c|c|} \hline Min-Hash \\ \hline \hline σ_{j} & ABC & BCE \\ \hline $min $\pi_{1}(.)$ & 2 & 2 \\ \hline $min $\pi_{2}(.)$ & 1 & 2 \\ \hline $min $\pi_{3}(.)$ & 1 & 1 \\ \hline $min $\pi_{4}(.)$ & 1 & 1 \\ \hline \end{tabular}$$

$$\approx \frac{1}{M} \sum_{j=1}^{M} \delta(\sigma_j(X) = \sigma_j(Y))$$

• Similarity between objects x and y is considered

V	Van	-Lei	i Zh	ao

▶ < ∃ ▶</p>

э

Measure $\Omega(x, y)$ by Hamming embedding (HE)

• Given we are under the context of BoVW

Wan-Lei Zhao

.⊒ →

Image-linking with Sim-min-Hash

1 Load one column of sketches into one inverted file

2 Perform cross-matching on each inverted list

Wan-	Lei	Zhao
------	-----	------

ヨト

Image-linking with Sim-min-Hash

- **1** Only the matches whose $\Omega(x, y) > \tau$ are kept
- 2 Matches are sorted by Image IDs after matching
- 3 Matches belonging to the same image pair are aggregated

∃ ► < ∃ ►</p>

A - A - A - A

Results by examples

Figure: Only the links whose confidence score above 2.0 are shown.

			•	_		
- 14		20	0.		ho	0
	v	a 11-	 e	-	110	

August 30, 2024

B b

Summary over Sim-min-Hash

- · Achieves much better trade-off between speed and quality
- Can be scaled up to 100 million level image collections
- Promising for web-scale data

Wan-Lei	Zhao	Multim

Outline

- Overview about Similar Image Retrieval & Detection
- 2 Bag-of visual Word Encoding
- 3 Min-Hash Approach
- 4 Vector of Locally Aggregated Descriptor

5 References

VLAD: framework

• Given vocabulary $\mathcal{W}(C_i \in \mathcal{W})$ and features $\mathbf{P}(x_i \in \mathbf{P})$ in one image

- General procedure
 - Foreach SIFT feature x_i do
 - Find the nearest neighbor k in W for x_i
 - Substract x_i with C_k
 - Aggregate this residue to V_k
 - endFor
- This results in a long dense vector representation for one image

Vector of Locally Aggregated Descriptor

VLAD: explained (1)

• Given image features $\{x_i\}$ and vocabuarly $\mathcal{W}\{w_i\}$

Wan-Lei Zhao Multimed	ia Technology August 30	39/49
Multimed	Tabuahan 20	0 0 0 1 0 0 1 0 0

Vector of Locally Aggregated Descriptor

VLAD: explained (2)

- Given image features $\{x_i\}$ and vocabuarly $\mathcal{W}\{c_j\}$
- Find the nearest neighbor k in W foreach x_i

Wan-I	.ei Z	hao
-------	-------	-----

Vector of Locally Aggregated Descriptor

VLAD: explained (3)

- Given image features $\{x_i\}$ and vocabuarly $\mathcal{W}\{c_j\}$
- Find the nearest neighbor k in $\mathcal{W}{c_i}$ foreach x_i
- Substract x_i with C_k : $R = x_i C_k$
- Aggregate this residue R to V_k
- Output $V_1 V_2 \cdots V_K$

< ∃ >

VLAD: equivalent to matching groups of features

- Many-to-Many feature matching
- Problem: matching via VLAD introduces too many noises

Wan-Lei Zhao

(1)

Performance Comparison on Oxford5k

- VLAD performs pretty well with much lower memory complexity
- BoVW+HE performs well the best at the cost of much more memory

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	43 / 49
		《 ㅁ ▶ 《 녑 ▶ 《 튼 ▶ 《 튼 ▶	≡ °) < (°

Oxford5k dataset

- There are 5063 images captured from Oxford University¹
- 55 images are selected as the query

 ${}^{1}https://www.robots.ox.ac.uk/~vgg/data/oxbuildings/ < \square \succ < \square \succ < \blacksquare \succ < \blacksquare \succ = \blacksquare$

Wan-Lei Zhao	W	an-	Lei	ZI	ıa	C
--------------	---	-----	-----	----	----	---

Holidays Dataset

- There are 1,491 images captured from around the world²
- 500 images are selected as the query

²https://lear.inrialpes.fr/ jegou/data.php

Holidays and Oxford5k

- Measured by mean Average Precision
- VLAD performs pretty well with much lower memory complexity
- Rol/11/ LUE porforms the best Wan-Lei Zhao Multime

Multimedia Technology

August 30, 2024

References

References

- 1 Distinctive Image Features from Scale-Invariant Keypoints, D. G. Lowe, *IJCV'10*
- 2 Near-duplicate Image and Video Detection, Wan-Lei Zhao, Chong-Wah Ngo, *Wiley Encyclopedia of Electrical and Electronics Engineering*, 2015
- **3** SURF: Speeded Up Robust Features, H. Bay and et al., ECCV'06
- 4 Video Google: Efficient Visual Search of Videos, J. Sivic and et al., 2006
- Efficiently Matching Sets of Features with Random Histograms, W. Dong and et al., MM'08
- **6** Embedding and Weak Geometry Constraint on Bag-of visual Keyword, H. Jegou and et al., *ECCV'08*
- Near Duplicate Image Detection: min-Hash and tf-idf Weighting, O. Chum and et al., BMVC'08
- B Aggregating local descriptors into a compact image representation, H. Jegou and et al., CVPR'10
- 9 Product quantization for nearest neighbor search, H. Jegou and et al., PAMI'11
- Image: Sim-Min-Hash: An efficient matching technique for linking large image collections, Wan-Lei Zhao, Herve Jegou, Guillaume Gravier, ACM MM'13
- ① Content-based copy detection using distortion-based probabilistic similarity search, A. Joly and et al., in TMM'07

< ロ > < 同 > < 回 > < 回 > < 回 > <

3

Wan-L	ei Zhao
-------	---------

æ.

Thanks for your attention!

Wan-Lei Zhao

Multimedia Technology

August 30, 2024

-∢ ≣ ▶