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Overview about Similar Image Retrieval & Detection

Introduction: opening discussion

® |mage features

® Global Features: Color-Moment, Color-Histogram
® Descriptor: SIFT and SURF
® Deep local Features: DELF, R-MAC

® \We are now ready to compare images by their features
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Overview about Similar Image Retrieval & Detection

Introduction: image near-duplicates (1)

® More than 22% of web images have similar/near-duplicate
counterparts
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Overview about Similar Image Retrieval & Detection

Advantages of image local feature

ITS THE WORST SHAME EVER!
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(a) scaling (b) rotation (c) blur+scaling (d) flip

® Robust to transformations such as scaling, rotation, cropping and etc.
® Invariant to flipping

® One-to-one region correspondence between sub-regions is established
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Overview about Similar Image Retrieval & Detection

The Scale of the Problem: Image Case

® The Complexity of Feature Matching

Given 1,500 features are extracted from one image
One feature is of 128 dimensions

1500x128x4 = 768,000 bytes

Given there are 10 billions of images in the database
Memory cost is: 768x10*G bytes

Time for one query: 0.2x10% = 63.4 years
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Overview about Similar Image Retrieval & Detection

Introduction: video near-duplicate (2)

e Different versions of “Lion Sleeps Tonight”

Y. | s

(a) a. mixture of several videos; b. color changes;
c. frame dropping; d. camcoding; e. superimpose
texts; f. superimpose logos
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Overview about Similar Image Retrieval & Detection

The Scale of the Problem: Video Case

® The Compleixty of Video Feature Matching

Given 10 minutes video

Two frames/second, 2x60x10 = 1200

One feature is extracted from one frame

One feature is of 128 dimensions

1200x 128 x4 = 614,400 bytes

Given there are 100 millions of videos in the database
Memory cost is: 61.44T bytes

Time cost for one query: 0.2x108s = 231.48 days
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Overview about Similar Image Retrieval & Detection

Related Works: Image near-duplicate Retrieval /Detection
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Bag-of visual Word Encoding

Why BoW is preferred over point-to-point matching

® Challenges

® Speed efficiency: 1 day for cross-matching within 600 images

® Memory efficiency: the size of feature > the size of image

® For 1,000 hours web-videos, more than 600,000 images are extracted,
computation costs are counted in CPU years

e Qpportunities

® Video is composed by image sequence with certain temporal order and
rate (e.g., 25fps)

® Approach for ND image retrieval /detection is extensible to ND video
retrieval /detection

® Bag-of visual words (BoW) framework [4]
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Bag-of visual Word Encoding

Bag-of visual words (BoW) Framework

Keypoint extraction Keypoint

feat Visual word
ea ure vocabulary
space

BoW histogram

® Advantages: inverted file can be leveraged, matching becomes highly
efficient

® Only 0.62s for 1 query against 1M images, while OOS takes 139 hours

® Disadvantages: introduces many false matches, loss of correct
matches
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Bag-of visual Word Encoding

BoW Offline Quantization: explained (1)

Image features

Vocabulary
I 1 I 1
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® Given image features (say SIFTs)

® Given vocabulary trained by K-means

® Quantization searches nearest neighbor for each feature in the
vocabulary

Wan-Lei Zhao
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Bag-of visual Word Encoding

BoW Offline Quantization: explained (2)

Vocabulary

Image features

[
(|
v .
R — Y .
D Y .
‘_ K
———
D
\ 1
1 5 K

® Given image features (say SIFTs)

® Given vocabulary trained by K-means

® We count the term frequency (TF) that each word appears in the
image I
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Bag-of visual Word Encoding

BoW Offline Quantization: explained (3)

Image features Vocabulary
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® Given image features (say SIFTs)
® Given vocabulary trained by K-means

® We count the term frequency (TF) that each word appears in the
image
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Bag-of visual Word Encoding

BoW Offline Quantization: explained (4)

Image features Vocabulary
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® Given image features (say SIFTs)
® Given vocabulary trained by K-means

® We count the term frequency (TF) that each word appears in the
image
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Bag-of visual Word Encoding

BoW Offline Quantization: explained (5)

Image features Vocabulary
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® Given image features (say SIFTs)
® Given vocabulary trained by K-means

® We count the term frequency (TF) that each word appears in the
image
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Bag-of visual Word Encoding

BoW Offline Quantization: comments

® BoW quantization is a typical vector quantization

It maps a D-dimensional vector into an integer

® Good news:
if the vocabulary is large enough, the resulting vector is very sparse

Bad news: because of quantization, many details get lost

Wan-Lei Zhao TS et 30,2024 18/49



Bag-of visual Word Encoding

Online Retrieva

| with BoW: explained

BoVW of the query

OB
_>[.; I

9| HE | ImageID | *~
X,y |scale, rotation

BoVW cell

® Local features of an image are represented by TF/IDF of visual words

Wan-Lei Zhao
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Bag-of visual Word Encoding

Noisy feature matches from BoW matching

® How to remove the false matches as many as possible?
® Principle

@ Integratable with BoW framework

@ As efficient as possible

e Current solution

® Hamming embedding [6] (visual verification)
® Weak Geometric Constraint [6] (geometric verification)
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Bag-of visual Word Encoding

Hamming Embedding: the idea

(a) Bovw (b) D(a,p)==0

® BoVW is modeled as Voronoi diagram in feature space
® Feature points in one cell are with zero distances to each other

® Hamming Embedding helps to estimate the intra-distance efficiently

Wan-Lei Zhao TSI et 30,2024 21749



Bag-of visual Word Encoding

Hamming Embedding: explained
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® Hamming Embedding helps to estimate the intra-distance efficiently
® This Hamming signature is used to prune noisy matches
® A simple idea is to prune matches hold Hamming distance larger than

a threshold
Wan-Lei Zhao ' Multimedia Technology August 30, 2024 22/49



Bag-of visual Word Encoding

Hamming Embedding: offline training

® Step 1. Produce projection matrix

@ Draw a Dx D white Gausian noise matrix M

@ Perform QR decomposition on M

© Select first K vector from Q to form projection matrix P
® Step 2. Train median for each visual word

@ Foreach training SIFT f; do

® Quantize f; into visual word w;

© Project f; by pj=f"P

O Join p; to U;

@ endFor

@ Find median mj for each U;

Wan-Lei Zhao TS et 30,2024 23749



Bag-of visual Word Encoding

Hamming Embedding: online quantization (1)

® Online quantization for one image

@ Foreach SIFT £ in one image
® Quantize f; into visual word w;
© Project i by p;=f"P

O Binarize p; based on m;

@ endFor
1 pik > my
b(pi) = ik > My
(Pic) { 0 pik <= mj

® Above procedure quantizes SIFT features in one image
® A binary signature with K bits is generated for each SIFT feature

® This signature is used for verification

Wan-Lei Zhao TS et 30,2024 24749



Bag-of visual Word Encoding

Hamming Embedding: online quantization (2)
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® A binary signature is attached to each quantized feature
® |t is later used to verify the visual word match

® |t introduces extra memory cost

Wan-Lei Zhao TSI et 30,2024 2549
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Min-Hash Approach

Background: image-linking within big collection

® Build hyper-links between images in the web

® Find near-duplicate shots in video collections

L I

?

HANE-AEN

® Compute a matrix with Nx N entries
® Requires huge memory and computationally intensive!!

e (Called as image-linking problem

Wan-Lei Zhao TSI et 30,2024 27749



Min-Hash Approach

Motivation: min-Hash

X=(A B.Cl Random permutation Min-Hash
TR LAl BCcD]E o, |ABC|BCE
Y=(B,C,E|
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® The probability of key collision (equal key value) equals to J
® The complexity of computing J(X, Y') is O(nlog(n))
® Only O(M) if min-Hash is adopted!!
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Min-Hash Approach

How well min-Hash is??

Varying Num. of Hash functions

1 T
N=128 | ©

Nssi2 o
N=2048  x ﬁ

Jaccard dist. estimated by min-Hash

0 02 04 06 08 1
true Jaccard distance

® The more hash functions we use, the better approximation we get
® However the higher the cost it takes
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Min-Hash Approach

min-Hash sketches

® Combine keys into sketch

Varying sketch size

Sketchsizesl | % k|
Sketch size=2 o -
Sietch size=3 7
08 e
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.
o, ABC|BCE a#N+ay, ABC|§CE5 2
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minm,(.) | 1 2 él 04 . r&g
minm,(.) | 1 1 5 &
minm,(.)| 1 1 8 6 6oz , &;&
4
Sketch size=1 Sketch size=2 g ,;PP

-

0 02 04 06
true Jaccard distance

Reduce the complexity further

Equivalent to a co-occurrence constraint

08

1

Degraded estimation (potential matches have been missed)

The sketch size is set to 2 in our experiments
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Min-Hash Approach

Sim-min-Hash: the motivation

X=(A,B,C) Random permutation Min-Hash
cuREA oAl B|CcDE o, |ABC|BCE
Y=(B,C,E| -
71;1(.) 3 5 2 1 4 mmnl(_) 2 2 ;
i 1
J(X,Y)=|X0Y| wnl) 112|534 minm,(.) | 1 2 NMZ B(GI(X)ZOJ-(Y))
|XuY]| nl) 21453 minm,(.) | 1 1 j=1
o) 511342 minm,(.)| 1 1
min-Hash

3(.)=0 o,(X)#0,(Y)
8()=1 o;(X)=0,Y)

Sim-min-Hash
[5(.)=0 0,(X)%0,(Y)

1

[sl)=2(x,y) o,(x)=0,(Y)
® Similarity between objects x and y is considered
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Min-Hash Approach

Measure Q(x,y) by Hamming embedding (HE)

® Given we are under the context of BoVW

(a) BoVW (b) HE
[T - p ......... r71 lelof - [ofo] ~
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Min-Hash Approach

Image-linking with Sim-min-Hash

Bovw Hash keys/sketches __. R_
: K1
Img: {A, B, C} \K1) ) : C 1)
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@ Load one column of sketches into one inverted file

® Perform cross-matching on each inverted list
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Min-Hash Approach

Image-linking with Sim-min-Hash
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Cross-match matchesﬂgf ) ]
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@ Only the matches whose Q(x, y) > 7 are kept
® Matches are sorted by Image IDs after matching
© Matches belonging to the same image pair are aggregated
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Min-Hash Approach

Results by examples

Figure: Only the links whose confidence score above 2.0 are shown.
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Min-Hash Approach

Summary over Sim-min-Hash

® Achieves much better trade-off between speed and quality
® Can be scaled up to 100 million level image collections

® Promising for web-scale data

Wan-Lei Zhao TS Augest 30,202
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Vector of Locally Aggregated Descriptor

VLAD: framework

® Given vocabulary W(C; € W) and features P(x; € P) in one image
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® General procedure
® Foreach SIFT feature x; do
Find the nearest neighbor k in W for x;
Substract x; with Cy
Aggregate this residue to Vi
endFor

® This results in a long dense vector representation for one image
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VLAD: explained (1)

Image features Vocabulary
1 T 1
2 e 2
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® Given image features {x;} and vocabuarly W{w;}
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Vector of Locally Aggregated Descriptor

VLAD: explained (2)

Image features Vocabulary

® Given image features {x;} and vocabuarly W{¢;}

® Find the nearest neighbor k in W foreach x;

Wan-Lei Zhao TS et 30,2024 40749



Vector of Locally Aggregated Descriptor

VLAD: explained (3)

Image features Vocabulary
—
[ h \
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® Given image features {x;} and vocabuarly W{c;}

Find the nearest neighbor k in W{¢;} foreach x;
Substract x; with C,: R = x; — Ci

® Aggregate this residue R to Vj

Output V1 V5--- Vi

Wan-Lei Zhao TS Augest 30,202
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Vector of Locally Aggregated Descriptor

VLAD: equivalent to matching groups of features

X1 i

ALB=>"| .| -] - (1)

n Yn

® Many-to-Many feature matching

® Problem: matching via VLAD introduces too many noises
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Vector of Locally Aggregated Descriptor

Performance Comparison on Oxford5k

mAP

o o, o R Ot b O,
0{1, hf fé‘oo(eo*’?) Mx,%(e%’ @ S 2, Qo
00 ) 00) Q) %y Y

Oxfordsk-Image Search (2004-2018)

® VLAD performs pretty well with much lower memory complexity

® BoVW+HE performs well the best at the cost of much more memory

Wan-Lei Zhao TS et 30,2024 43749



Vector of Locally Aggregated Descriptor

Oxfordbk dataset

® There are 5063 images captured from Oxford University?

® 55 images are selected as the query

https:/ /www.robots.ox.ac.uk/ vgg/data/oxbuildings/
Wan-Lei Zhao ' Multimedia Technology August 30, 2024 44 /49



Vector of Locally Aggregated Descriptor

Holidays Dataset

® There are 1,491 images captured from around the world?

® 500 images are selected as the query

2https://lear.inrialpes.fr/ jegou/data.php
Wan-Lei Zhao ' Multimedia Technology August 30, 2024 45 /49



Vector of Locally Aggregated Descriptor

Holidays and Oxford5k

Holidays+FlickrlM
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(a) Holidays+1M

® Measured by mean Average Precision

e VLAD performs pretty well with much lower memory complexity
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Thanks for your attention!
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