Multimedia Technology

Lecture 7: Image Features

Lecturer: Dr. Wan-Lei Zhao Autumn Semester 2024

Email: wlzhao@xmu.edu.cn, copyrights are fully reserved by the author. = > = - ? ...

w	lan-	Lei	Zhad

Multimedia Technology

- · We already know how the image is represented in computer
- We can process image as a matrix
- We can process image as a multi-variable function
- In this lecture, focus is turned on image features
- Why image feature?
- What are they
 - Image Local Features
 - Image Global Features
- How to extract them?

Outline

2 Scale Space

3 Local Features

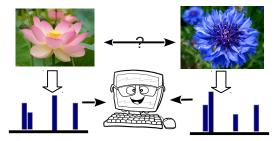
4 Deep Features

5 References

Wan-Lei Zhao	Multimedia Technology	October 30, 2024	3 / 83
			≣

Why image features? (1)

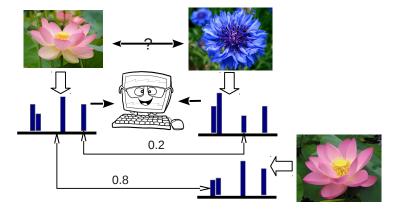
- Images are not directly comparable by computer
- Features are the media to represent the images



• Open issue: how the images are represented in our brain??

Global Features

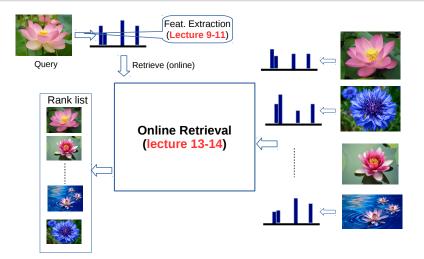
Why image features? (2)



• Features should reflect the similarity as precise as possible

Global Features

Framework of content based image retrieval (CBIR)



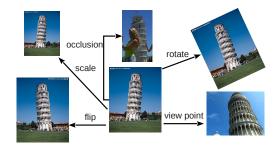
• CBIR = image features + retrieval/comparing method

Wan-Lei Zhao

Multimedia Technology

October 30, 2024

Invariance properties of the features



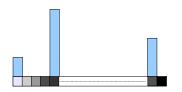
- Scale invariance is desired
- Rotation invariance is desired
- Flip invariance is desired
- Sometimes, color invariance is desired

. . .

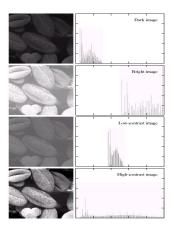
Image global features

- They are mostly statistical variables defined on image
- Easy to compute
- Popular global features:
 - Color Histogram
 - Color Moments
 - Histogram of Oriented Gradients
 - VLAD: globalized local feature (talk later)

Color Histogram (1)

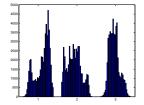


- Counting num. of pixels in each color range
- For color images:
 - Apply CH on each channel
 - Concatenate the vectors



-∢ ≣ ▶

Color Histogram (2)



10/83

(a) Original image (b) Color histogram from RGB channels

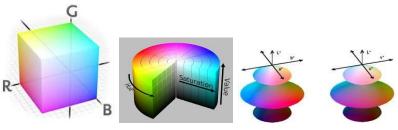
Color Histogram (3)

1	img1 = imread('lena.jpg');
2	r1 = im2double(img1(:,:,1)) * 256;
3	hr = hist(reshape(r1,(225*225),1),32);
4	g1 = im2double(img1(:,:,2))*256;
5	hg = hist(reshape(g1,(225*225),1),32);
6	b1 = im2double(img1(:,:,3)) * 256;
7	hb = hist(reshape(b1,(225*225),1),32);
8	hist = [hr; hg; hb];
9	bar(hist);
10	

Listing 1: Code to calculate histogram of 3 channels

< ∃ →

Color Spaces



(c) RGB color space (d) HSV color space (e) Lab color space

- Image can be represented with different color spaces
- There are formulars to do the transform in between
- Color histograms on HSV and Lab are more distinctive

Color Moment

- Intensity value distribution (on one channel) is viewed as a statistical variable
- We can calculate its moments (usually referred as central moment)
- Which is given below

 $\mu_n = E[X - E[x]]^n$

- E[x] is calculated by taking the average
- n is the order

4x4 grid

- Moments are concatenated and moments from different blocks are concatenated
- It turns out to be simple but pretty successful

Global Features

HOG: Histogram of Oriented Gradients



Partial Derivatives on Image

- Image is a multi-variable function f(x, y)
- When taking derivatives, dx=dy=1
- As a result

$$\frac{\partial I(x,y)}{\partial x} = I(x,y) - I(x-1,y)$$

• The second order derivative is given as

$$\frac{\partial^2 I(x,y)}{\partial x^2} = [I(x+1,y) - I(x,y)] - [I(x,y) - I(x-1,y)]$$
$$= [I(x+1,y) + I(x-1,y)] - 2 \cdot I(x,y)$$

Wan-Lei Zhao

October 30, 2024

Global Features

How well are the global features?

Flip

Scaling

Rotation

Affine

Occlusion

Transform	СН	HOG	Human vision
Scale	partially	partially	fully ¹
Rotation	fully	no	fully
Affine	partially	partially	fully
Flip	fully	no	fully
Occlusion	no	no	fully
Light/Color	vulnerable	vulnerable	fully
Blur	vulnerable	vulnerable	partially
View point	vulnerable	vulnerable	partially

• Homework:

- Submit transformed images as query to Google image
- See how well the system achieves invariances

¹except for extreme cases

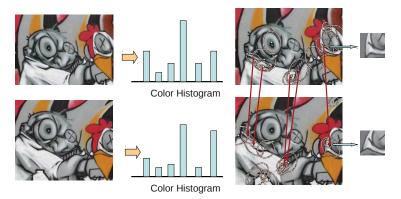
Wan-Lei Zhao

Multimedia Technology

October 30, 2024

Global Features

Global Feature vs Local Interest Point Feature



(a) Two paradigms for evaluating similarity between two images: global feature against local feature

• Images are compared in a finer granularity

Wan-Lei Zhao

< ロ > < 同 > < 三 > < 三 >

Scale Invariance: the concept (1)

- We already mentioned this concept before
- We study how we can achieve this for image local feature

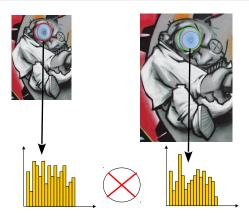
- Local feature is detected, we cannot simply compare their pixel values
- They are simply not distinctive

Wan-Lei Zhao

Scale Invariance: the concept (2)

- We need to compare a local region
- But how to scope this local region?
- Fix the size for all points detected?

Scale Invariance: the concept (3)



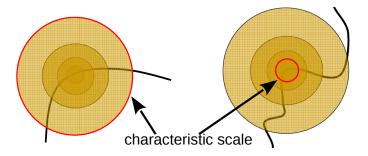
- It is not working!!
- Fixed size does not cover the same region in two different images
- What we expect is the region scoped by green circle

Wan-Lei Zhao

Multimedia Technology

October 30, 2024

Scale Invariance: the concept (4)



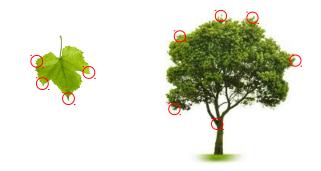
- We are looking for something like this
- The selected scale in two images cover the same local structure
- Notice that we detect corners from each image independently

Wan-	Lei Z	Zhao
------	-------	------

Scale Invariance: scale space (1)

- In order to achieve scale invariance, let's look at scale space first
- What you can see you stand under tree?
- What you can see you stand 50 meters away from the tree?

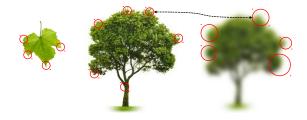
Scale Invariance: scale space (2)



- Now you are asked to finger out corners from the leaf and from the tree
- Are you convinced?
- Can you still see the corners in one leaf when you stand 50 meters away?

Wan-Lei Zhao

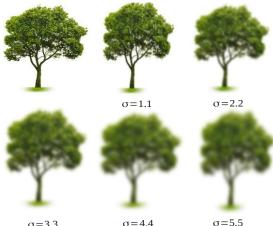
Scale Invariance: scale space (3)



- Now let's move to 200 meters away from the tree
- What you can see??
- Conclusion: certain corners only appear/survive in certain range of scales/watching distances

Wan-Lei Zha	ο
-------------	---

Scale Invariance: scale space (4)



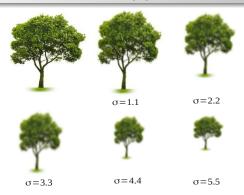
 $\sigma = 3.3$

 $\sigma = 5.5$

- Once the photo is taken, the distance between the tree and our watch position is fixed
- We simulate this by convolution with different σ s

Wan-Lei Zhao

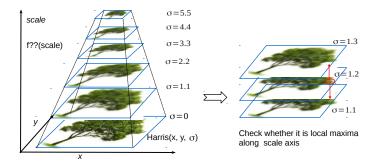
Scale Invariance: scale space (5)



- When the image is blurred heavily, it is no need to keep its original size
- So finally we have above blurred image series
- As mentioned before, in different distances, you see different corners
- We want to find these stable points, which are visible within certain distance range

Wan-Lei Zhao

Scale Invariance: scale space (6)



- If we stack up this series of blurred images
- We have this pyramid
- Stable points are those which attain local maximum in scale space
- Local maximum means it is 'salient' within certain distance range

Wan-Lei Zhao Multimedia Technology	October 30. 2024	
	(*日) (四) (美) (日) (日)	

Wan-Lei Zhao	Multimedia Technology	October 30, 2024	29 / 83
		(미) (리) (혼) (혼)	E 990

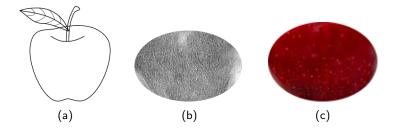
Why edges (2)

Wan-Lei Zhao	Multimedia Technology	October 30, 2024
	Multimedia recinology	October 30, 2024

æ

30 / 83

Why edges (3)

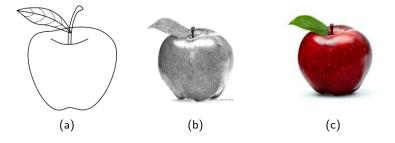


• Edges use less number of pixels than color blocks (Fig. (b)-(c)), however turn out to be more informative

Wan-Lei Z	'hao
-----------	------

October 30, 2024

Why edges (4)

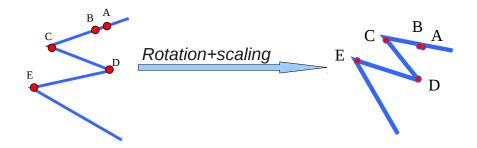


• Edges already carry most of the information to outline an object

W	an-	Lei	Zhad)
---	-----	-----	------	---

.⊒ →

Why corners instead of edges (1)



- Points (A, B) along the edges merged to each other
- The same for points in the flat region
- Corners (C, D, E) survive through scaling and rotation
- Different regions have different degree of robustness
- Corners are preferred

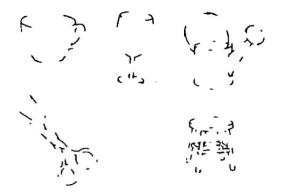
Why corners instead of edges (2)

Guess what are the objects with edges only (corners are largely removed)

Wan-L	ei Zhao	
-------	---------	--

< ∃ >

Why corners instead of edges (3)



• Guess what are the objects with corners only

	w	an-	Lei	Zhao
--	---	-----	-----	------

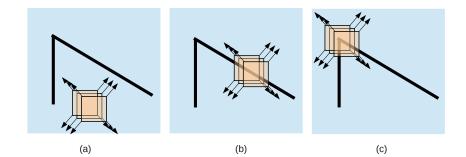
Why corners instead of edges (4)

• Check your answer

Wan-Lei Z	hao
-----------	-----

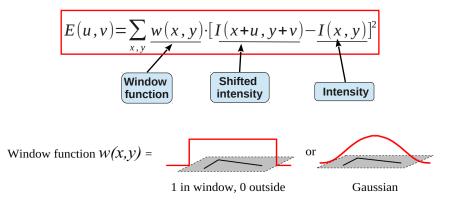
э

How to detect the corners



- Take an observing window, and move around
- No change in (a)
- Change happens along one direction in (b)
- Strong responses in two directions in (c)

Formularize the probing procedure (1)



- Measuring the energy changes
- w is the probing window
- u and v are the shifts in x and y directions

Wan-Lei Zhao

Formularize the probing procedure (2)

$$I(x+u, y+v) \approx I(x, y) + u \cdot I_x(x, y) + v \cdot I_y(x, y)$$

$$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]^{2}$$

$$= \sum_{x,y} w(x, y) [I(x, y) + uI_{x}(x, y) + vI_{y}(x, y) - I(x, y)]^{2}$$

$$= \sum_{x,y} w(x, y) [uI_{x}(x, y) + vI_{y}(x, y)]^{2}$$

$$= [u, v] \left(\sum_{x,y} w(x, y) \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$
(4)

Wan-Lei Zhao

< 17 × <

э

< ∃ →

Formularize the probing procedure (3)

$$E(u, v) = \sum_{x,y} w(x, y) [I(x + u, y + v) - I(x, y)]^{2}$$

$$= \sum_{x,y} w(x, y) [I(x, y) + uI_{x}(x, y) + vI_{y}(x, y) - I(x, y)]^{2}$$

$$= \sum_{x,y} w(x, y) [uI_{x}(x, y) + vI_{y}(x, y)]^{2}$$

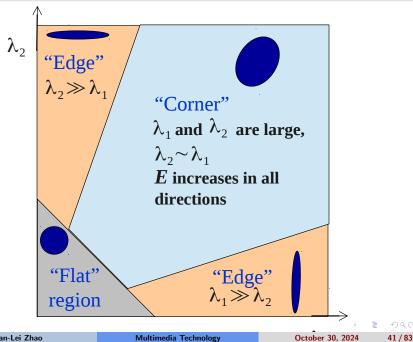
$$= [u, v] \left(\sum_{x,y} w(x, y) \begin{bmatrix} I_{x}^{2} & I_{x}I_{y} \\ I_{x}I_{y} & I_{y}^{2} \end{bmatrix} \right) \begin{bmatrix} u \\ v \end{bmatrix}$$

$$E(u, v) = [u, v] \cdot M \cdot \begin{bmatrix} u \\ v \end{bmatrix}$$
(6)

Wan-Lei Zhao

→ < ∃→

э



October 30, 2024

Harris Detector: the results

- Steps:
 - 1 Compute Harris(x, y) for each pixel
 - Select the points that attain local maximum (Non-maximum suppression)
 - **3** Consider points whose $Harris(x, y) > t_0$

- How to make use of these detected points?
- How the circle comes?

Wan-Lei Zhao

Multimedia Technology

October 30, 2024

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hessian Detector

In practice, Hessian function is also a good option

$$H(x, y, \sigma) = \begin{bmatrix} \frac{\partial^2 I(x, y, \sigma)}{\partial x^2} & \frac{\partial^2 I(x, y, \sigma)}{\partial x \partial y} \\ \frac{\partial^2 I(x, y, \sigma)}{\partial y \partial x} & \frac{\partial^2 I(x, y, \sigma)}{\partial y^2} \end{bmatrix}$$

 $Hessian(x, y, \sigma) = Det(H(x, y, \sigma)) * \sigma^{2}$

I-Lei	Zhao		ſ
-------	------	--	---

Wan

Image: A matrix and a matrix

글 🖌 🖌 글 🛌

э

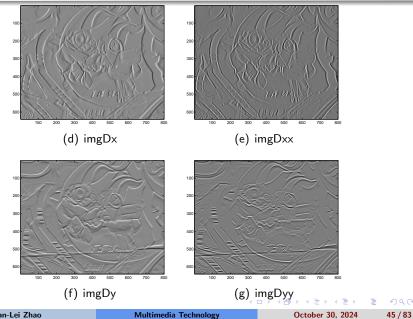
Hessian Detector: steps

- Convert input color image into gray level image (optional)
- 2 Design Dxx, Dxy, Dxy Gaussian templates
- 3 Apply Dxx, Dxy, Dxy template on the gray level image
- 4 Calculate Hessian function based on following Equation

$$H(x, y, \sigma) = \sigma^4 * (Dxx * Dyy - Dxy^2)$$

Apply non-maximum suppression on Hessian function imageDisplay points higher than a threshold

Hessian Detector: the derivatives

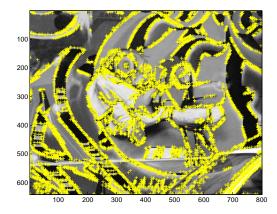


Wan-Lei Zhao

Multimedia Technology

October 30, 2024

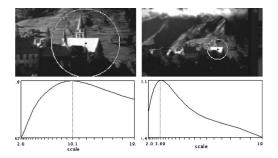
Hessian Detector: the derivatives



э

Scale Invariance by Hessian Detector

• Calculate Hessian with a series of $\sigma_1, \sigma_2, \cdots$



 Take the σ where H(x, y, σ) achieves local maxima as the characteristic scale

$$H(x, y, \sigma) = \sigma^4 * (Dxx * Dyy - Dxy^2)$$

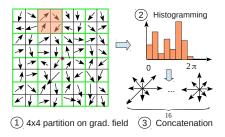
SIFT descriptor: the motivation

- Up to now, we are able to extract local point as a local patch
- To check whether two local patches are similar or not
- We need a feature represenation for this local patch
- There are dozens of options: CH, CM or Gabor (wavelet feature)
- SIFT turns out to be the most successful one

Overview about SIFT descriptor

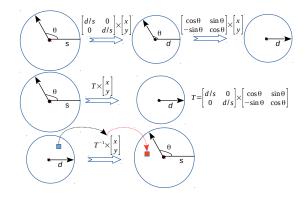
- It is known the best local interest point (keypoint) descriptor
- Num. Of citations: 31,039 (up to 14th, Aug., 2015)
- It is distinctive, but still tolerant to small errors (displacement, lighting changes, deformation) in the local patch
- When people talk about image local features, people talk on the basis of SIFT
- Refer to: David G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints, IJCV'04, pp. 91-110.

SIFT descriptor: the procedure



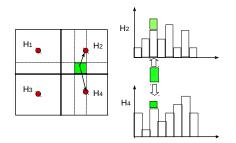
- Pre-processing steps:
- Normalize the patch to $2d \times 2d$
- Calculate gradient field
- SIFT generation:
 - 1 Partition gradient into 4×4 grid
 - 2 Compute gradient histogram on each block
 - **3** Concatenate 16 histograms as the final feature

Three tricks in SIFT Implementation: (1)

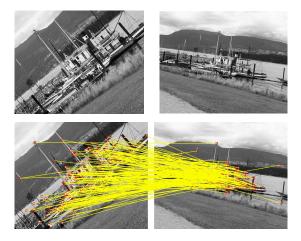


- 1 Extracting hole-less Normalized Patch
- 2D interpolation
- 3 Removal of abnormal peaks

Three tricks in SIFT Implementation (2)



- 1 Extracting hole-less Normalized Patch
- **2** 2D interpolation
- 3 Removal of abnormal peaks

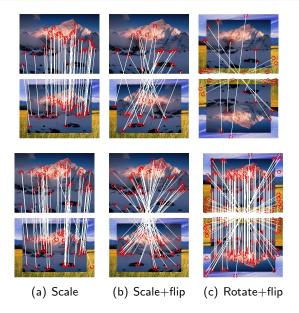


	Lei	

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの



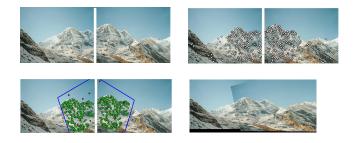
54 / 83



Wan-Lei Zhao	D
--------------	---

3

Image Stiching with SIFT



- 1 Matching image pairs first
- 2 Stich images with overlaps
- 3 Blending the stiched images

Summary over Geometric Invariances

- Based on different schemes, we can achieve
 - **1** Scale invariance by detecting points in scale-space
 - **2** Rotation invariance by estimating the dominant orientation
 - **3** Affine invariance by adapting to local structure
 - 4 Flip invariance by estimating the dominant angular moment

Dark side of Local feature (1)

- 1 The computational cost is high
- **2** Vulnerable to big view-point changes
- 3 Vulnerable to deformation

Wan-Lei Zhao

October 30, 2024

<ロト < 同ト < ヨト < ヨト

Dark side of Local feature (2)

- 1 The computational cost is high
- **2** Vulnerable to big view-point changes
- 3 Vulnerable to deformation

< ∃ →

Outline

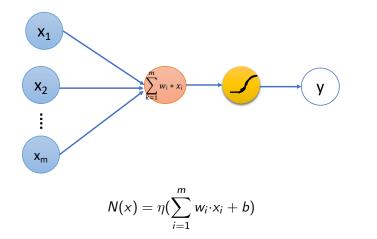
2 Scale Space

3 Local Features

5) References

		< L >		≣ *) ⊄ (*
Wan-Lei Zhao	Multimedia Technology		October 30, 2024	60 / 83

Perceptron: a Review



- The basic element for a neural Network is neuron
- It consists of a linear mapping with a non-linear activation

Wan-Lei Zhao

Multimedia Technology

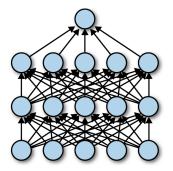
October 30, 2024

∃ > < ∃ >

э

(7)

Dense Network: a Review



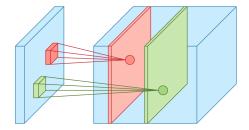
• Dense Network

Wan-L	ei Z	'hao
-------	------	------

< ロ > < 同 > < 回 > < 回 > < 回 > <

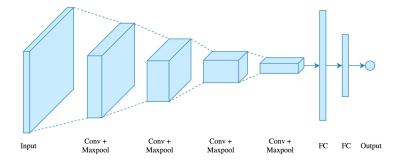
3

Convolution Neural Network (1)



- One filter convolves over the whole image
- The resulting image is called a feature map
- One filter is trained to pick cerntain pattern from the image

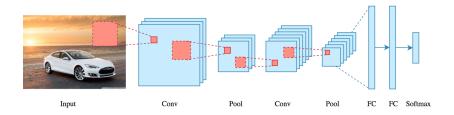
Convolution Neural Network (2)



• A complete CNN is a stack-up of several CNN layers

Wan-Lei Zhao	Multimedia Technology	October 30, 2024	64 / 83
vvan-Lei Znau	Wultimedia recinology	October 30, 2024	04/03

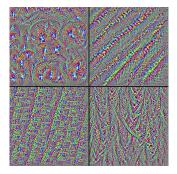
Convolution Neural Network (3)



- CNN is first found to be powerful for image classification task
- The filter maintains the relative location pixels

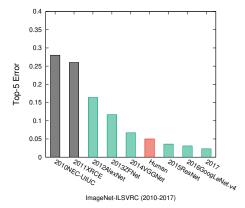
-∢ ≣ ▶

Convolution Neural Network (4)



- A visualization of VGG-Block5 filters
- One filter picks a specific pattern from the feature maps of the previous layer

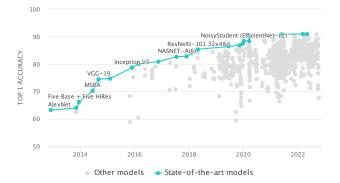
CNN for Classification (1)



- Year 2012 is the starting year of deep learning
- Supervised image classification is no longer a problem

Wan-L	ei Z	'hao
-------	------	------

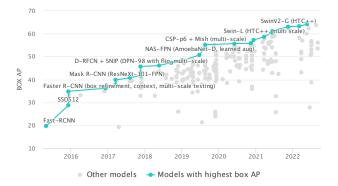
CNN for Classification (2)



- Supervised image classification is no longer a problem²
- It becomes a platform to verify the power of a deep model

²https://paperswithcode.com/sota/

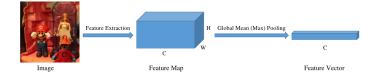
CNN for Object Detection



- The performance of Supervised Object Detection is also saturated³
- Online/semi-supervised/unsupervised Object detection are open issues

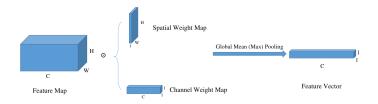
³ https://paperswithcode.	com/sota/	<□> <問> < 同> < 同> < 同> < 同> < 同> < 同> < 同	୬୯୯
Wan-Lei Zhao	Multimedia Technology	October 30, 2024	69 / 83

Global Max Pooling



- One feature vector is produced for one image
- Max pooling is applied on one feature map
- Pooling results are concantenated into a fixed length vector

Global Weighted Max Pooling

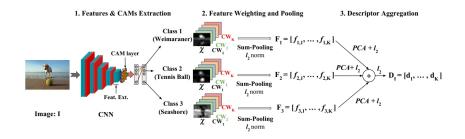


• As a variant, you can assign a weight according to the importance

	•		E OQC
Wan-Lei Zhao	Multimedia Technology	October 30, 2024	71 / 83

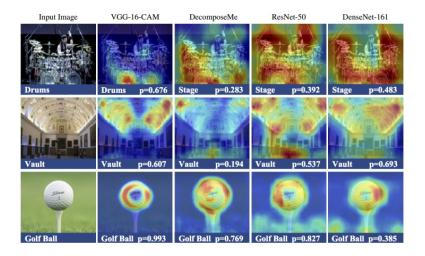
Global Max Pooling Example (1)

Wan-Lei Zhao



	Multimedia Technology	October 30, 2024
--	-----------------------	------------------

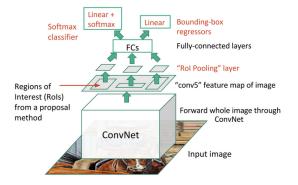
Global Max Pooling Example (2)



Wan-Lei Zhao	Multimedia Technology	October 30, 2024	73 / 83

イロト イポト イヨト イヨト 三日

ROI Pooling (1)



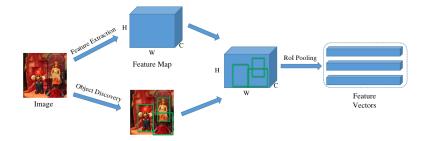
- It was first proposed in Faster R-CNN paper⁴
- Different sizes of proposals are converted into the feature maps in the same size

⁴S. Ren, K. He, R. Girshick, J. Sun: Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks.

Wan-Lei Zhao

74 / 83

ROI Pooling (2)



- Given we want to build feature from a local region
- Maxpooling/average pooling is applied on a local

Wan-	Lei Z	hao
------	-------	-----

3 🕨 🖌 3 🕨

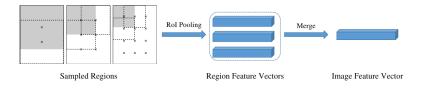
э

ROI pooling in animation

- Divide the proposals into fixed number of blocks⁵
- Take the maximum/average on each block

⁵View animation with Acrobat Reader

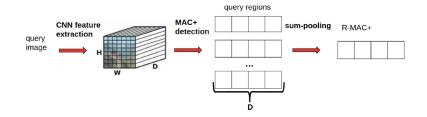
ROI Pooling Example: R-MAC (1)



• R-MAC extracts local features from feature maps

Wan-Lei Zhao	Multimedia Technology

ROI Pooling Example: R-MAC (2)



• Feature extraction for the query

Wan-Lei Z	hao
-----------	-----

Performane Comparison on Oxford5k: the dataset

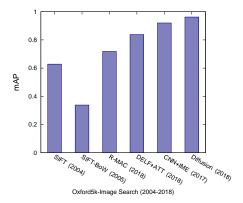
- There are 5063 images captured from Oxford University⁶
- 55 images are selected as the query

 $^{6} https://www.robots.ox.ac.uk/ \ vgg/data/oxbuildings/ < \square \succ < B \succ < E \succ <$

	w	lan-	Lei	Zhad	0
--	---	------	-----	------	---

Image: Image:

Performane Comparison on Oxford5k: the dataset



- The performance of SIFT (point-to-point matching) is already satisfactory, BUT slow
- Deep features are very successful for image search task

Wan-Lei Zhao

References

- 1 Distinctive Image Features from Scale-Invariant Keypoints, D. G. Lowe, *IJCV'10*
- 2 SURF: Speeded Up Robust Features, H. Bay and et al., ECCV'06
- Slip invariant SIFT for Video Copy and Object Detetion, Wan-Lei Zhao and et al. TIP'13
- 4 Feature Detection with Automatic Scale Selection, Tony Lindeberg, IJCV'98, pp.79-116
- Scale and affine invariant interest point detectors, Krystian Mikolajczyk and et al. IJCV'02, pp.63-86
- 6 Local Invariant Feature Detectors: A Survey, T. Tuytelaars and K. Mikolajczyk, NoW Publisher Inc. 2008
- Class-weighted convolutional features for visual instance search, Jimenez A, Alvarez J M, Giro-i-Nieto X., 2017
- 8 Fast R-CNN, Girshick R., CVPR, 2015: 1440-1448
- Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, S. Ren, K. He, R. Girshick, J. Sun, ICCV, 2015
- Particular object retrieval with integral max-pooling of CNN activations, Tolias G, Sicre R, Jégou H., 2015

くロ と く 同 と く ヨ と 一

3

.

Thanks for your attention!

Wan-Lei Zhao

Multimedia Technology

October 30, 2024