Multimedia Technology

Lecture 5: Unsupervised Learning

Lecturer: Dr. Wan-Lei Zhao Autumn Semester 2024

VVali-Lei Zilau	w	an-	Lei	Zhad	
-----------------	---	-----	-----	------	--

Outline

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	2 / 46
	4	미 / 《畵 / 《코 / 《토 / []]	୬୯୯

Topics in this Lecture

- We are going to leave apart from IR for a while
- We are going to introduce several extremely useful machine learning algorithms
 - While you can say they are data-mining tools/algorithms
- Not all machine learning algorithms will be discussed
 - Only the popular algorithms will be covered
 - We are going to use them in the lectures coming next
- Why I do so
 - I try to make this course self-sufficient and self-containing
 - Considering that you come from different places with different backgrounds

ヨトィヨト

Outline

1 Openning Discussion

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	4 / 46
	٩	미 / 《谜 / 《환 / 《환 / "환	うくで

General Concept about clustering (1)

- Given a dataset (with N number of items)
- Clustering make a partition on the dataset
- Data items have been divided into k groups
- k is usually given by user

Wan-Lei Zhao

August 30, 2024

General Concept about clustering (2)

- Clustering is a hot research topic in 1990s in the heyday of data-mining
- There are more than 10 different clustering algorithms in the literature
- They have been built upon different assumptions in different contexts
 - k-means: general purpose, K is required as input parameter
 - DBSCAN and mean-shift: density based approach, distance threshold or density threshold is required
 - Chameleon and Agglomerative Approach: down-to-top approach
 - Normalize cut: proposed under the context of image segmentation

k-means: the general procedure

- It is a chicken-egg loop
- Given **N** items and **K**
 - 1 Select K items out as initial centers
 - 1 Assign items to its closest center (a partition is formed)
 - **2** Update each center with average (or centroid) of items in this group
 - 2 Loop until centers do not change
- The complexity is $O(K \cdot N \cdot D)$, where **D** is the dimension of data item
- This is the most efficient clustering, and it can be faster!!
- Only one parameter
- It converges quickly
- Dark side1: **Be careful** if **K** is a critical number in your application
- Dark side2: it only obtains sub-optimal solution, this is true for all clustering algorithms

k-means: a demo

Multimedia Technology

August 30, 2024

k-means: additional advantage

- k-means forms a convex partition on the whole space
- Known as Voronoi cells
- Each cell is scoped by one cluster center

Wan-Lei Zhao

Multimedia Technology

Variants of k-means: k-means++ (1)

- This work is still quite new¹
- Motivation: try to optimize the initialization of clustering centers
- Idea: try to select points far apart from each other
- Goal: adapt better to the data distribution

¹D. Arthur and S. Vassilvitskii, "k-means++: the advantages of careful seeding", 18th ACM-SIAM symposium on Discrete algorithms, 2007.

Variants of k-means: k-means++ (2)

• Given **N** items and **K**

- 1 Select one item out randomly as the first center
- 2 Repeat following procedure K-1 times
 - Calculate distance for each item x to existing center(s)
 - 2 Take the distance that each item to its cloest center as D(x)
 - **3** Select a new center out with probability propotional to $D^2(x)$
 - **4** Join this new center to existing centers

3 Complete k-means clustering according to conventional procedure

- Modifications are made only on the initialization stage
- This leads to faster convergence
- Better adaptation to the data distribution

Outline

1 Openning Discussion

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	12 / 46
	٠	· · · · · · · · · · · · · · · · · · ·	🖹 ୬୯୯

Motivation: k-means remains pupolar (1)

- k-means is ranked at top-10 algorithms in data-mining
- It remains popular in various applications
 - Large-scale web page clustering
 - Large-scale Image clustering/linking
 - Vector quantization and product quantization
 - Data Compression

Motivation: superity of k-means (2)

Advantages

- Simple
- Fast, the complexity is $O(n \cdot d \cdot k \cdot t)$
 - n is the size of data
 - **d** is the dimension of the data
 - **k** is the number of clusters
 - t is the number of iterations
- Comments:
 - Compared to mean-shift, DB-SCAN, etc.
 - It is much more efficient
 - In terms of clustering quality
 - The results are moderately good in most of the cases

Motivation: disadvantage of k-means (3)

- Disadvantages
 - It is **slow**, the complexity is $O(n \cdot d \cdot k \cdot t)$
 - n is the size of data
 - **d** is the dimension of the data
 - **k** is the number of clusters
 - t is the number of iterations
- Comments:
 - Given **n** is big
 - Given **d** is high
 - Given k is large
 - Given t is large too!
- For instance:
 - 2*M* × 128 matrix
 - Divide into 20,000 clusters
 - Run on 3.4G Hz, 4 threads
 - It takes more than **3** days

Motivation: could be faster and better? (4)

• It is **slow**, the complexity is $O(n \cdot d \cdot k \cdot t)$

- **n** is the size of data
- **d** is the dimension of the data
- **k** is the number of clusters
- t is the number of iterations
- Possible solutions:
 - We cannot change **n**
 - We cannot change **d**
 - We can reduce \mathbf{k} to $\log(\mathbf{k})$ by hierarchical clustering
 - $\bullet\,$ We can make t smaller, that means it converges faster

Traditional k-means: a recap

- 1 Initialize k centroids
- 2 Assign each sample to its closest centroids
- **3** Recompute centroids with assignments produced in **Step 2**
- 4 Repeat Step 2 and Step 3 until convergence

k-means is formulized as a minimization problem:

Min.
$$\sum_{q(x_i)=r} \| C_r - x_i \|^2$$
. (1)

where $q(x_i)$ returns the closest centroid C_r for x_i .

k-means: a demo

Wan-Lei Zhao	o
--------------	---

Multimedia Technology

August 30, 2024

18/46

Formalize k-means in a new form

• Given
$$D_r = \sum_{x_i \in S_r} x_i$$
 and $n_r = |S_r|$

• C_r is the centroid of cluster S_r

- It takes a little bit of efforts to work out above result
- We are happy to see this result (later you will see)

Optimize k-means with new target function

- Given $D_r = \sum_{x_i \in S_r} x_i$ and $n_r = |S_r|$
- C_r is the centroid of cluster S_r

Max.
$$\mathcal{I}_1 = \sum_{r=1}^k \frac{D'_r D_r}{n_r}$$

- Now we have new optimization function
- Problem: how to maximize \mathcal{I}_1 ?

(2)

Optimize k-means with new target function

- **1** Pick x_i in random $(x_i \in S_u)$
- **2** Check $\Delta \mathcal{I}_1$ when moving x_i from cluster S_u to S_v

$$\Delta \mathcal{I}_{1}(x_{i}) = \frac{(D_{v} + x_{i})'(D_{v} + x_{i})}{n_{v} + 1} - \frac{(D_{u} - x_{i})'(D_{u} - x_{i})}{n_{u} - 1}$$

$$= \frac{D_{v}'D_{v} + 2x_{i}'D_{v} + x_{i}'x_{i}}{n_{v} + 1} - \frac{D_{u}'D_{u} - 2x_{i}'D_{u} + x_{i}'x_{i}}{n_{u} - 1}$$
(3)

3 Move x_i to S_v that achieves highest $\Delta \mathcal{I}_1$

Wan-Lei Zhao

Outline of the algorithm (1)

- 1 Assign $x_i \in X$ with a random label
- **2** Calc. $D_1, \dots, D_r, \dots, D_k$ and \mathcal{I}_1
- 8 Repeat
- 4 For each $x_i \in X$
- **5** Seek S_v that max. $\Delta \mathcal{I}_1(x_i)$
- $\mathbf{6} \qquad \text{If } \Delta \mathcal{I}_1(x_i) > 0$
- **7** Move x_i to cluster S_v
- 8 End-If
- 9 End-For
- Ind-Repeat

イロト イポト イヨト イヨト 三日

k-means[#] in breif

• Comments:

- We can either choose "best" move or "fast" move
- "fast" converges to lower distortion but takes more rounds
- "best" converges faster but slower in each iteration

Wan-Lei Zhao

Multimedia Technology

August 30, 2024

k-means[#] and *k*-means: major differences

Operations	k-means [#]	<i>k</i> -means
Initial assigment	not necessary	necessary
Seeking closest centroid	not necessary	necessary
Update strategy	incremental	egg-chicken loop

- 1 It is not necessary that assigns samples to closest initial centroid
- 2 It is not necessary to assign sample to its cloest centroid in the loop
- 3 Clusters are updated as soon as we find the moving is approperiate

Wan-Lei Zhao	Multimedia Technology	August 30, 2024	25 / 4
--------------	-----------------------	-----------------	--------

k-means[#]: a demo (2)

Figure: Comparison of initial assigment of two algorithms

∍⊳

k-means[#] in Animation

Hierarchical k-means[#] (1)

- k-means[#] is faster than traditional k-means
- However, they are on the same complexity level: $O(n \cdot d \cdot k \cdot t)$
- We can perform k-means in a hierarchical manner
 - 1 Cluster given matrix into 2 clusters
 - 2 Pick an intermediate cluster
 - 3 Cluster the cluster into 2
 - 4 Repeat Step 2-3 until k is reached

Hierarchical k-means[#] (3)

- The complexity of hierarchical clustering is $O(n \cdot d \cdot \log(k) \cdot \overline{t})$
- Notice that log(k) is much smaller than k
- That means $n \cdot d$ is multiplied by a small factor
- However, hierarchical *k*-means[#] faces underfitting problem

(a) the 1st round bisecting

(b) the 2nd round bisecting

 Later, we will see the efficiency of hierarchical k-means[#] and its quality

Experiment: clustering quality (1)

We check how the original target is reached

Min.
$$\sum_{q(x_i)=r} \| C_r - x_i \|^2$$
 (4)

(5)

• The final function score (distortion) is averaged

$$\bar{E} = \frac{\sum_{q(x_i)=r} \parallel C_r - x_i \parallel^2}{n}$$

The lower the better

Wan-Lei Zhao	Multimedia Technology	August 30, 2024		31 / 46
			₹.,	*) Q (*

Experiment: clustering quality (2)

Check the effect of initial assignment

Initial assignment impacts little to the clustering quality

Wan-Lei Zhao

Experiment: clustering quality (3)

• Check whether it is necessary to seek the best moving

Wan-Lei Zhao

Experiment: clustering quality (4)

• In comparison to k-means and its variants

Wan-Lei Zhao Multimedia Technology August 30, 2024 34/46

Experiment: document clustering (1)

- 15 document datasets are adopted²
- Document is represented by vector under TF/IDF model
- Entropy is adopted for evaluation

$$Entropy = \sum_{r=1}^{k} \frac{n_r}{n} \frac{1}{\log c} * \sum_{i=1}^{c} \frac{n_r^i}{n_r} * \log \frac{n_r^i}{n_r},$$

- In the range of [0,1], the lower the better
- The performance is averaged over 15 datasets

 2 http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/ < \Box > < \Box > <

3 🗼 3

(6)

Experiment: document clustering (2)

Table: Clustering performance (average entropy) on 15 datasets

	k = 5	k = 10	k = 15	k = 20
k-means	0.539	0.443	0.402	0.387
k-means++	0.550	0.441	0.403	0.389
Mini-Batch	0.585	0.488	0.469	0.475
$KM^{\#}(non)$	0.552	0.442	0.388	0.368
$KM^{\#}(rnd) + Fast$	0.506	0.419	0.380	0.353
BsKM	0.532	0.438	0.410	0.373
BsKM++	0.507	0.422	0.400	0.379
$BsKM^{\#}(non)$	0.514	0.388	0.353	0.329
RBK	0.486	0.402	0.366	0.339

• Different numbers of clusters have been tested

Experiment: product quantization (1)

- Different clustering methods are adopted to produce the PQ vocabulary
- SIFT1M is adopted³
- 128-dimensional SIFT is PQ into 8 segments, each is encoded by 256 words
- The success rate of top-k nearest neigbor search is evaluated

³http://corpus-texmex.irisa.fr/

Experiment: product quantization (2)

- PQ is tolerant to clustering quality
- However, Mini-batch and RBK (Repeated Bisecting k-means) are considerably poorer Wan-Lei Zhao
 Multimedia Technology
 August 30, 2024

38 / 46

Experiment: image clustering (1)

- In order to test the scalability of k-means#
- 10M image dataset is adopted
- Image is represented as 512-dimensional VLAD vector
- We consider both clustering speed and quality (average distortion)

Experiment: image clustering efficiency (1)

- k-means[#] is the fastest in two cases
- Bisecting is around 20 times faster than direct k-way

Wan-Lei Zhao

Multimedia Technology

August 30, 2024

Experiment: image clustering efficiency (2)

- When we increase the number of clusters
- k-means[#] maintains its efficiency

Wan-Lei Zhao

Experiment: image clustering quality

 k-means[#] achieves the best performance in direct k-way and bisecting cases

Wan-Lei Zhao

Multimedia Technology

August 30, 2024

Summary

- *k*-means[#] is simpler
 - No chicken-egg loop
 - Initial assignment is not necessary
 - Moving to closest centroid is not necessary
- k-means[#] always leads to lower clustering distortion
- k-means[#] is the most efficient
- Story behind this work
- Source codes are available⁴
 - Motivated by the image linking problem
 - My student, **Chenghao Deng** suggested to remove the initial assignment

⁴https://github.com/wlzhao22/xkmeans

- Empirical and Theoretical Comparisons of Selected Criterion Functions for Document Clustering, Ying Zhao and George Karypis, Machine Learning, 2004
- 2 k-means++: the advantages of careful seeding, D. Arthur and S. Vassilvitskii, 2007
- 3 Top 10 algorithms in data mining, X. Wu, V. Kumar and et al. Knowledge and Information Systems, 2008, 14(1): 1-37
- 4 The Nature of Statistical Learning Theory, Vladimir N. Vapnik , Springer-Verlag, 1995.
- 🌖 k-means: a revisit, W.-L. Zhao, C.-H. Deng, C.-W. Ngo, Neurocomputing, 2018
- 6 Lecture notes on Machine Learning, Andrew Ng., http://cs229.stanford.edu/

< ロ > < 同 > < 回 > < 回 > < 回 > <

Wan-	Lei	Zhao
------	-----	------

æ.

Thanks for your attention!

Wan-Lei Zhao

Multimedia Technology

August 30, 2024

- ∢ ⊒ →

46 / 46