Multimedia Technology

Lecture 5: Unsupervised Learning

Lecturer: Dr. Wan-Lei Zhao
Autumn Semester 2024

Email: wizhao@xmu.edu.cn, copyrights are fully reserved by the author.
Wan-Lei Zhao Multimedia Technology August 30, 2024

1/46



Outline

@ Openning Discussion
© k-means
© k-means”

@ References

«40>» «Fr «=)» <

it
-
[y

DA



Openning Discussion

Topics in this Lecture

® We are going to leave apart from IR for a while

® We are going to introduce several extremely useful machine learning
algorithms

® While you can say they are data-mining tools/algorithms

Not all machine learning algorithms will be discussed
® Only the popular algorithms will be covered
® We are going to use them in the lectures coming next
Why | do so
® | try to make this course self-sufficient and self-containing
® Considering that you come from different places with different
backgrounds
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k-means

General Concept about clustering (1)

Given a dataset (with N number of items)

Clustering make a partition on the dataset

Data items have been divided into k groups

k is usually given by user

Estimated numiber of dusters: 3
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k-means

General Concept about clustering (2)

® Clustering is a hot research topic in 1990s in the heyday of
data-mining

® There are more than 10 different clustering algorithms in the literature

® They have been built upon different assumptions in different contexts

® k-means: general purpose, K is required as input parameter

® DBSCAN and mean-shift: density based approach, distance threshold
or density threshold is required

® Chameleon and Agglomerative Approach: down-to-top approach

® Normalize cut: proposed under the context of image segmentation
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k-means

k-means: the general procedure

It is a chicken-egg loop

Given N items and K
@ Select K items out as initial centers

@ Assign items to its closest center (a partition is formed)
@ Update each center with average (or centroid) of items in this group

@ Loop until centers do not change
The complexity is O(K-N-D), where D is the dimension of data item
This is the most efficient clustering, and it can be faster!!
Only one parameter
It converges quickly
Dark sidel: Be careful if K is a critical number in your application

Dark side2: it only obtains sub-optimal solution, this is true for all
clustering algorithms
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k-means

k-means: a demo

(d) iter=3 (e) iter=4 () iter=5
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k-means

k-means: additional advantage
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® k-means forms a convex partition on the whole space
® Known as Voronoi cells
® Each cell is scoped by one cluster center
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k-means

Variants of k-means: k-means++ (1)

1

This work is still quite new

Motivation: try to optimize the initialization of clustering centers

Idea: try to select points far apart from each other
Goal: adapt better to the data distribution

'D. Arthur and S. Vassilvitskii, “k-means+-: the advantages of careful seeding’”,
18th ACM-SIAM symposium on Discrete algorithms, 2007.
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k-means

Variants of k-means: k-means++ (2)

® Given N items and K

@ Select one item out randomly as the first center
@ Repeat following procedure K-1 times

@ Calculate distance for each item x to existing center(s)

@ Take the distance that each item to its cloest center as D(x)
© Select a new center out with probability propotional to D?(x)
@ Join this new center to existing centers

© Complete k-means clustering according to conventional procedure

® Modifications are made only on the initialization stage
® This leads to faster convergence
® Better adaptation to the data distribution
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k-means’

Motivation: k-means remains pupolar (1)

® k-means is ranked at top-10 algorithms in data-mining

® [t remains popular in various applications

o
oy

+ii o

T

® Vector quantization and product quantization

® Large-scale Image clustering/linking
® Data Compression

® |arge-scale web page clustering

n
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k-means’

Motivation: superity of k-means (2)

® Advantages
® Simple
® Fast, the complexity is O(n-d-k-t)
® n s the size of data
® d is the dimension of the data
® k is the number of clusters
® tis the number of iterations

o Comments:
® Compared to mean-shift, DB-SCAN, etc.
® [t is much more efficient
® |n terms of clustering quality
® The results are moderately good in most of the cases
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k-means’

Motivation: disadvantage of k-means (3)

® Disadvantages
® |t is slow, the complexity is O(n-d-k-t)
® n is the size of data
® d is the dimension of the data
® k is the number of clusters
® tis the number of iterations

o Comments:

® Given n is big

® Given d is high

® Given k is large

® Given t is large too!
® For instance:

® 2M x 128 matrix
Divide into 20,000 clusters
Run on 3.4G Hz, 4 threads
It takes more than 3 days
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k-means’

Motivation: could be faster and better? (4)

® |t is slow, the complexity is O(n-d-k-t)
® n is the size of data

d is the dimension of the data

k is the number of clusters

® tis the number of iterations

® Possible solutions:
® We cannot change n
® We cannot change d
® We can reduce k to log(k) by hierarchical clustering
® \We can make t smaller, that means it converges faster
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k-means’

Traditional k-means: a recap

@ Initialize k centroids
®  Assign each sample to its closest centroids
©® Recompute centroids with assignments produced in Step 2

O Repeat Step 2 and Step 3 until convergence

k-means is formulized as a minimization problem:

Min. Y || G —x |

a(xi)=r

where g(x;) returns the closest centroid C, for x;.
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k-means’

k-means: a demo

(d) iter=4 (e) iter=5 () iter=6
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k-means’

Formalize k-means in a new form

® Given D, = le.esr xi and n, = [5|

® (C, is the centroid of cluster S,
Min. > | G —x | (1)
q(xi)=r

I

k /
Max. 7; = ) brD: (2)

n
r=1 r

® |t takes a little bit of efforts to work out above result

e We are happy to see this result (later you will see)
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k-means’

Optimize k-means with new target function

Given D, =" x;i and n, = |5/

X,'€5r
e (, is the centroid of cluster S,
k
D!.D,
Max. 71 = X
1=
r=1
® Now we have new optimization function
® Problem: how to maximize 777

Wan-Lei Zhao TS Augest 30,202

20/46



k-means’

Optimize k-means with new target function

® Pick x; in random (x; € S,)
® Check AZ; when moving x; from cluster S, to S,

(Dv + Xi),(Dv + Xi) _ (Du - Xi)/(Du - Xi)

AL(a) = n,+1 n,—1
v u
_ DD, +2x{D, + x;x;  D;D, —2x;D, + x{x;
- n,+1 n,—1

©® Move x; to S, that achieves highest AZ;

Wan-Lei Zhao TS Augest 30,202
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k-means’

Outline of the algorithm (1)

@ Assign x; € X with a random label
® Calc. Di,---,D,, -+, Dy and I

© Repeat

@® Foreach x; € X

O  Seek S, that max. AZ;(x;)

(6) If AZ;(x;)) >0

(7] Move x; to cluster S,
(8] End-If
©® End-For

@ End-Repeat
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k-means’

k-means? in breif

1. Pick x; at random (x,€S,)

O~

2.Move X;to S, if AI>0 2. Move x;to 5 as Al highest
(fast) (best)

N

Repeat Step 1-2 until
convergence

e Comments:

® We can either choose “best” move or “fast” move
® “fast” converges to lower distortion but takes more rounds
® “best” converges faster but slower in each iteration

Wan-Lei Zhao TS Augest 30,202
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k-means’

k-means” and k-means: major differences

’ Operations k-means? k-means
Initial assigment not necessary | necessary
Seeking closest centroid | not necessary | necessary
Update strategy incremental egg-chicken loop

@ It is not necessary that assigns samples to closest initial centroid
@ It is not necessary to assign sample to its cloest centroid in the loop

© Clusters are updated as soon as we find the moving is approperiate
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k-means’
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k-means?:

(c) iter=10
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(b) iter

(a) initial

Figure 1. k-means? iteration
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k-means’

k-means™: a demo (2)

(a) k-means® (b) k-means

Figure: Comparison of initial assigment of two algorithms
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k-means’

Hierarchical k-means? (1)

® k-means” is faster than traditional k-means
® However, they are on the same complexity level: O(n-d-k-t)

® We can perform k-means in a hierarchical manner

@ Cluster given matrix into 2 clusters
@® Pick an intermediate cluster

©® Cluster the cluster into 2

@O Repeat Step 2-3 until k is reached

Wan-Lei Zhao TS Augest 30,202
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k-means’

Hierarchical k-means? (2)

(a) the 1st partition

=
Com> (oD
i) G

(b) the 2nd partition

Wan-Lei Zhao TS et 30,2024 29/46



k-means’

Hierarchical k-means? (3)

The complexity of hierarchical clustering is O(n-d-log(k)-t)
Notice that /og(k) is much smaller than k
That means n-d is multiplied by a small factor

However, hierarchical k-means# faces underfitting problem
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e Later, we will see the efficiency of hierarchical k-means# and its

quality
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k-means’

Experiment: clustering quality (1)

® We check how the original target is reached

Min. > || G —x |7
q(x;)=r

® The final function score (distortion) is averaged

4
Dq)=r | Cr = xi |12

n

E=

® The lower the better

Wan-Lei Zhao TS Augest 30,202
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k-means’

Experiment: clustering quality (2)

® Check the effect of initial assignment

41200 g T T T T
\ k-means”(non) —
\ k-means# -=--
41000 fi-y Ir\—means#(rnd) St A
v i i k-means”(kpp). - - -
40800 [t
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2 40600 S .
2 \ . samples to initial centroids
% 40400 [\ Bl St i B e ® non: no initial assigment
:% “\ ® rnd: same as k-means
40200 |y ‘ ‘ ® kpp: same as k-means+-+
s
<.
40000 B e
39800 | | | | | | |

20 40 60 80 100 120 140 160
Iteration

® |nitial assignment impacts little to the clustering quality
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k-means’

Experiment: clustering quality (3)

® Check whether it is necessary to seek the best moving

41200 :
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]
40400
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Iteration
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k-means’

Experiment: clustering quality (4)

® |n comparison to k-means and its variants

n=10° k=1,024
: : : : 52000 — ‘
. ] # _ k-means”(non) ——
45000 |- '[ \;nézans (non) 1 k-means —_--
L -
k-means --- 51500 | k-means++
. k-means++ - '
44000 ' Mini-Batch :
- ‘. k-means”(rnd)+Fast 5 51000 \
S £ \
z o \
S 43000 | % 50500
a o \
o - $50000 |
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Iteration Iteration
(c) Comparison to k-means variants (d) Significance test

® k-means” outperforms k-means and its variants considerably
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k-means’

Experiment: document clustering (1)

¢ 15 document datasets are adopted?

® Document is represented by vector under TF/IDF model
® Entropy is adopted for evaluation

® In the range of [0,1], the lower the better

® The performance is averaged over 15 datasets

2http://glaros.dtc.umn.edu/gkhome/fetch/sw/cluto/
Wan-Lei Zhao
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k-means?

Experiment: document clustering (2)

Table: Clustering performance (average entropy) on 15 datasets

k=5|k=10] k=15 [ k=20
k-means 0.539 | 0.443 | 0.402 | 0.387
k-means—++ 0.550 | 0.441 | 0.403 | 0.389
Mini-Batch 0585 | 0.488 | 0.469 | 0.475
KM#(non) 0.552 | 0.442 | 0.388 | 0.368
KM#(rnd)+Fast | 0.506 | 0.419 | 0.380 | 0.353
BskKM 0532 [ 0.438 | 0.410 | 0.373
BsKM++ 0.507 | 0.422 | 0.400 | 0.379
BsKM7 (non) 0.514 | 0.388 | 0.353 | 0.329
RBK 0.486 | 0.402 | 0366 | 0.339

e Different numbers of clusters have been tested

Wan-Lei Zhao Multimedia Technology August 30, 2024
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k-means’

Experiment: product quantization (1)

Different clustering methods are adopted to produce the PQ
vocabulary

SIFT1IM is adopted?

128-dimensional SIFT is PQ into 8 segments, each is encoded by 256
words

® The success rate of top-k nearest neigbor search is evaluated

3http://corpus-texmex.irisa.fr/
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k-means’

Experiment: product quantization (2)
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® PQ is tolerant to clustering quality
® However, Mini-batch and RBK (Repeated Bisecting k-means) are
considerably poorer
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k-means’

Experiment: image clustering (1)

In order to test the scalability of k-means#

10M image dataset is adopted
® Image is represented as 512-dimensional VLAD vector
We consider both clustering speed and quality (average distortion)
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k-means’

Experiment: image clustering efficiency (1)

‘ 140 |BsKM++ o f
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(a) k=1,024, direct k-way (b) k=1,024, bisecting

e k-means? is the fastest in two cases

® Bisecting is around 20 times faster than direct k-way
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k-means’

Experiment: image clustering efficiency (2)

100
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1600
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(a) n=10°, direct k-ways (b) n = 10°, bisecting

® \When we increase the number of clusters

® k-means# maintains its efficiency
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k-means’

Experiment: image clustering quality
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(b) n=10°, vary k

® k-means” achieves the best performance in direct k-way and
bisecting cases
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k-means’

Summary

k-means™ is simpler
® No chicken-egg loop
® |nitial assignment is not necessary
® Moving to closest centroid is not necessary

k-means# always leads to lower clustering distortion

k-means? is the most efficient

Story behind this work
Source codes are available?

® Motivated by the image linking problem
® My student, Chenghao Deng suggested to remove the initial
assignment

*https://github.com /wlzhao22 /xkmeans
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Thanks for your attention!
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