Multimedia Technology

Lecture 10: Visual Instance Search & Text to Visual Instance Search

Lecturer: Dr. Wan-Lei Zhao Autumn Semester 2024

N	/an	I-L	ei	ZI	ıa	c

Outline

1 Instance Search

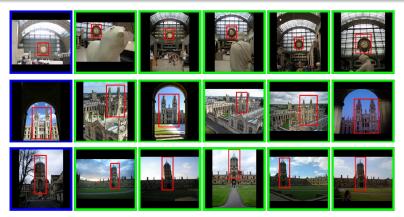
- 2 Full Convolutional Network for Instance Search
- 3 DASR for Instance Search
- 4 Text to Visual Instance Search

5 Reference

イロト 不得 トイヨト イヨト 二日

Instance Search

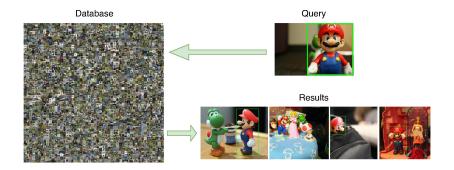
Overview of Instance Search



- 1 Search for instances of a specific object, person, or location
- **2** Localize the instance in the image (given as bounding box)
- 3 Also known as "sub-image search"

< □ > < 同 > < 三 >

Instance Search: the problem



• Instance search is widely used in various multimedia applications

- video editing, image hyperlink and online shopping, etc.
- Instance: any semantically meaningful visual subject

<ロト < 同ト < ヨト < ヨト

Instance Search

Major Challenges in Instance Search: representation (1)

- Faces similar challenges as Image Search
- But ... even more ...

Figure: Object proposals produced by "edgebox".

- **1** Global representation does not work
- 2 Keypoint features are vulnerable to object deformations
- **3** Bounding boxes produce too many meaningless candidates
- 4 It requires an object level representation

Wan-Lei Zhao

Multimedia Technology

Major Challenges in Instance Search: indexing structure (2)

- Given 40 instances in one image
 - **1** Memory consumption is one magnitude higher than image search
 - 2 The location information should be kept with indexing structure
 - **3** The speed efficiency is one magnitude slower than image search
 - **4** Faces similar performance degradation as the scale of problem grows

Instance Search

Overview of Instance Search

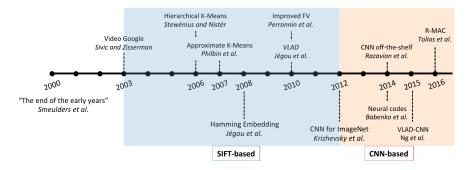


Figure: Milestones of instance search.

- Different kinds of visual features
 - 1 Local features: SIFT, SURF, BoVW, Fisher Vector, VLAD, etc.
 - **2** Global features: GIST, HOG, LBP, etc.
 - Oeep features: aggregated or quantized by BoVW or VLAD.

イロト イポト イヨト イヨト 三日

Overview: Instance Search with Deep features (1)

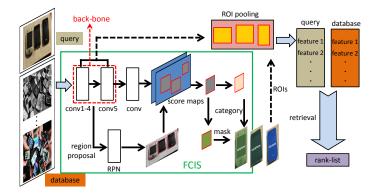
- Image local features are good to describe image local regions
- Advantage
 - 1 they cover most of the local regions
 - 2 they are very distinctive
- Disadvantage
 - 1 they are in big number
 - 2 they are sensitive to deformations
 - 3 they are sometimes too distinctive
 - 4 they do not cover an object exactly

Overview: Instance Search with Deep features (2)

- We are searching for an instance level feature representation
- One feature should cover exactly/approximately one instance
- Challenges and Expectations
 - 1 Instances are in various shapes and layouts
 - 2 Instances of the category should be similar
 - 3 Instances of the same class should be still distinctive to each other

イロト イポト イヨト イヨト 二日

Instance Search with Deep features: the framework (1)

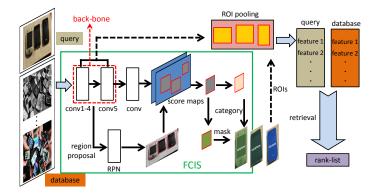


- A full convolutional neural network is trained
- It is originally used for semantic segmentation

Multimedia Technology

< □ > < 同 >

Instance Search with Deep features: the framework (2)



- The backbone network is ResNeXt
- The output are the segmentations of instances

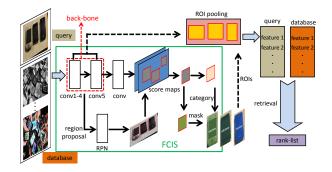
Multimedia Technology

▶ ■ 11 / 51

3 x x 3 x

< 口 > < 同 >

Instance Search with Deep features: the framework (3)



- The output are the segmentations of instances
- ROI pooling is applied on each segmented region
- One instance is finally represented by one feature with uniform length

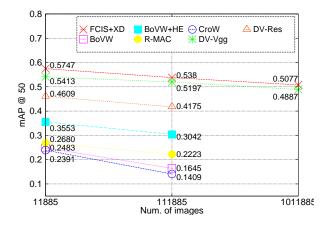
Full Convolutional Network for Instance Search

Dataset: Instance-160

- 160 query instances are collected from 160 object tracking video
- 12,000 images are extracted from the video (dense sampling)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Performance on Instance-160 (1)



• Comparisons are conducted with deep features and image local features

Wan-Lei Zhao

Multimedia Technology

14 / 51

.⊒ **)** ∃

・ コ ト ・ 一戸 ト ・ ヨ ト ・

Full Convolutional Network for Instance Search

Performance on Instance-160 (2)

- This approach works pretty well
- It requires a well annotated trainning set (pixel level)

Multimedia Technology

< D > < A > < B > < B >

Outline

2 Full Convolutional Network for Instance Search

3 DASR for Instance Search

4 Text to Visual Instance Search

5 Reference

イロト 不得 トイヨト イヨト 二日

Existing Solutions and Challenges (1)

Image-search based solutions

- Features are aggregated from several local regions into a global feature
- Several weighting strategies are employed to highlight instances
- e.g., R-MAC, CroW, CAM, BLCF-SalGAN, and Regional Attention
- Advantages
 - Only pre-trained models are required
- Challenges
 - Features are not discriminative for instance search
 - The instance localization are unfeasible

イロト イポト イヨト イヨト 三日

Existing Solutions and Challenges (2)

Instance-level solutions

- Instances are localized using object detection or segmentation framework
- For instance, DeepVision, FCIS+XD and PCL*+SPN
- Advantages
 - Instance-level localizations and features are obtained
- Challenges
 - The training conditions are demanding
 - Generalization to the unseen categories is nearly impossible

イロト 不得 トイヨト イヨト 二日

The Aim of our Design

- Class-agonistic
- 2 Instance localization
- 3 High discriminative of the instance level feature

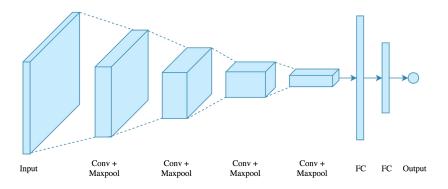
イロト イポト イヨト イヨト 三日

Motivation: the idea

- The last convolution layer preserves class-agnostic clues for latent instances
 - They are not suppressed in the prediction layer yet

< ロ > < 同 > < 回 > < 回 > < 回 > <

The Last Conv. Layer: a recap

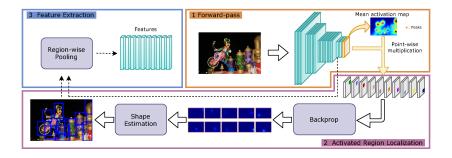


- Objects from both the known and unknown classes are activated
- After FC, the activation on the unknown objects will be suppressed

э

★ ∃ ► < ∃ ►</p>

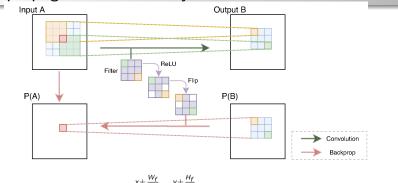
The Framework



- Peaks in the forward-pass indicate the latent instances (of both known and unknown)
- A back-propagation process is leveraged to highlight instance regions
- Instance-level features are extracted with localization results

イロト イポト イヨト イヨト 三日

Back-propagation in One Layer in Detail



$$P(A_{x,y}) = \sum_{i=x-\frac{W_f}{2}}^{x+\frac{W_f}{2}} \sum_{j=y-\frac{H_f}{2}}^{y+\frac{H_f}{2}} P(A_{x,y}|B_{i,j})P(B_{i,j})$$
(1)

$$P(A_{x,y}|B_{i,j}) = \begin{cases} Z_{i,j}A_{x,y}F_{x-i,y-j}, & \text{if } F_{x-i,y-j} > 0\\ 0, & otherwise. \end{cases}$$
(2)

A top-down probability model is introduced

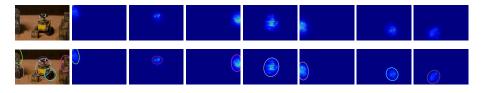
Wan-Lei Zhao

Multimedia Technology

23 / 51

э

Instance Localization with Second Moment Matrix



$$\sum_{r(x,y)\geq\tau} \begin{bmatrix} x^2 & x \cdot y \\ x \cdot y & y^2 \end{bmatrix}$$
(3)

- The second moment matrix is employed to estimate the instance shape
- The final localizations are the circumscribed rectangles of the estimated ellipses

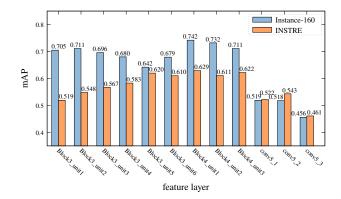
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

More Salient region: DASR*

- Remaining issues
 - Different instances share one latent response peak
 - Different peaks indicate nearly the same region
- Solutions
 - More pixels are back-propagated
 - Non-maximum suppression (NMS) is employed to reduce the representation redundancy and select out the most salient regions

イロト 不得 トイヨト イヨト 二日

Ablation Study (1): layer for feature-pooling

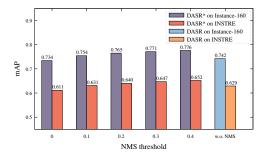


- Experiments are conducted with ResNet-50 and Vgg-16
- Features derived from ResNet-50 are much distinctive

Wan-Lei Zhao

Multimedia Technology

Ablation Study (2): DASR vs. DASR*



- DASR* outperforms DASR when $\beta > 0.1$
- The larger overlapping rate β leads to better performance

(日)

How about Back-propagating from the Last Layer

 Comparing with the approaches back-propagated from the last layer, DASR enables to localize class-agnostic instances with bounding boxes.

イロト 不得 トイヨト イヨト 二日

Instance Search Results on Two Benchmarks

Approach	Model-Type	Loc.	Dim.	Instance-335			INSTRE
Арргоаст	wodel- Type			Top-50	Top-100	All	
R-MAC	pre-trained	image	512	0.234	0.315	0.375	0.523
CroW	pre-trained	image	512	0.159	0.225	0.321	0.416
CAM	pre-trained	image	512	0.194	0.263	0.347	0.320
BLCF	pre-trained	image	336	0.246	0.358	0.483	0.636
BLCF-SalGAN	pre-trained	image	336	0.245	0.350	0.469	0.698
Regional Attention	pre-trained	image	2,048	0.242	0.351	0.488	0.542
DeepVision	strong	region	512	0.402	0.521	0.620	0.197
FCIS+XD	strong	pixel	1,536	0.403	0.500	0.593	0.067
PCL*+SPN	weak	region	1,024	0.380	0.475	0.580	0.575
DASR	pre-trained	region	2,048	0.419	0.558	0.699	0.629
DASR*	pre-trained	region	2,048	0.433	0.580	0.724	0.647
DASR-m	pre-trained	region	2,048	0.411	0.533	0.662	0.671
DASR-m*	pre-trained	region	2,048	0.428	0.560	0.694	0.692

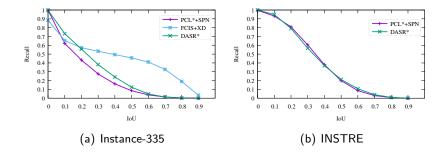
- DASR outperforms many weakly supervised approaches
- The only pre-trained model that achieves region level localization

Wan-Lei Zhao

Multimedia Technology

イロト 不得 トイヨト イヨト 二日

Localization Accuracy



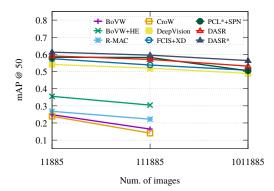
 DASR* shows superior performance compared to weakly supervised model PCL*+SPN

30 / 51

(日)

э

Instance Search Results in Large-scale



• DASR* outperforms all the approaches, including FCIS+XD based on a fully supervised model

Wan-Lei Zhao

Multimedia Technology

31 / 51

э

Instance Search Samples

- It is meaningful even for false-positive samples
- DASR fails when the object is in small-scale ($< 32 \times 32$ pixels)

Multimedia Technology

3

(日)

DASR for Image Search: the idea

- DASR features are considered as instance level features
- DASR features could be aggregated into image level feature via VLAD

3 K K 3 K 3

Image Search Results

Method	Dim.	Holidays	Oxford5k	Paris6k
BoVW+HE	65,536	0.742	0.503	0.501
SIFT+VLAD*	8,192	0.664	0.359	0.391
R-MAC	512	-	0.669	0.830
CroW	512	0.851	0.708	0.797
CAM	512	0.785	0.712	0.805
BLCF	336	0.854	0.722	0.798
BLCF-SalGAN	336	0.835	0.746	0.812
Regional Attention	2,048	-	0.768	0.875
DeepVision	512	-	0.710	0.798
DASR+VLAD	8,192	0.834	0.594	0.690
DASR*+VLAD	8,192	0.873	0.613	0.744

- It is competitive to features specfically designed for image-level search
- It becomes possible to integrate instance-level and image-level search under one framework

イロト イポト イヨト ・ヨ

How DASRs are Distributed in a Natural Image

Wan-Lei Zhao

Multimedia Technology

3 35 / 51

∃ >

・ロト ・ 同ト ・ ヨト ・

Summary

- Advantages
 - No additional training data or training stage is required
 - Localization of latent foreground instances is feasible
 - The pipeline can be carried out using any CNN classification network

イロト 不得 トイヨト イヨト 二日

Outline

- Full Convolutional Network for Instance Search

- 4 Text to Visual Instance Search

イロト 不得 トイヨト イヨト 三日

Motivation of Text-to-Image/Instance Search

- Given text query, we want to search for images/visual instance that are semantically relevant
- This is achieved by text descriptions paired with images
- Or "image captioning"
- CLIP fills the semantic gap between image and text

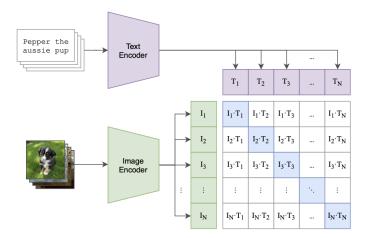
イロト イポト イヨト イヨト 三日

What is CLIP model?

- It is a text-image model
- Mapping text and image into the same feature space
- Support many downstream tasks
 - 1 Zero-shot object detection
 - Image Classification
 - **3** Image generation, e.g. DALLE

イロト イポト イヨト イヨト 三日

CLIP pre-training framework



Wan-Lei Zhao

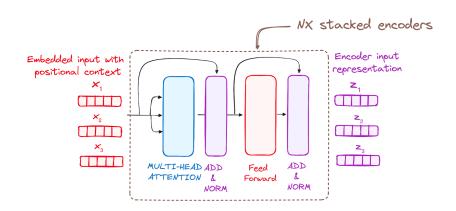
Multimedia Technology

<ロト < 同ト < ヨト < ヨト

CLIP training code

```
1 # image_encoder - ResNet or Vision Transformer
2 # text_encoder - CBOW or Text Transformer
3 # I[n, h, w, c] - minibatch of aligned images
4 \# T[n, 1] - minibatch of aligned texts
5 \# W_i[d_i, d_e] – learned proj of image to embed
_{6} \# W_{t}[d_{t}, d_{e}] - learned proj of text to embed
7 \# t - learned temperature parameter
9 I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
11 # joint multimodal embedding [n, d_e]
12 l_e = l2_normalize(np.dot(l_f, W_i), axis=1)
13 T_e = l2_normalize(np.dot(T_f, W_t), axis=1)
14 # scaled pairwise cosine similarities [n, n]
15 logits = np.dot(l_e, T_e.T) * np.exp(t)
16 # symmetric loss function
17 labels = np.arange(n)
18 loss_i = cross_entropy_loss(logits, labels, axis=0)
19 loss_t = cross_entropy_loss(logits, labels, axis=1)
20 loss = (loss_i + loss_t)/2
```

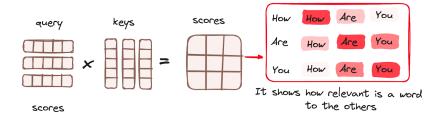
More Details about Encoder



Multimedia Technology

イロト イボト イヨト イヨト

Self Attentions (1)

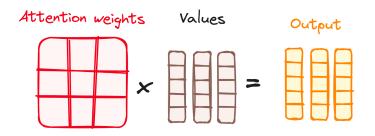


Multimedia Technology

э

<ロト < 同ト < ヨト < ヨト

Self Attentions (2)

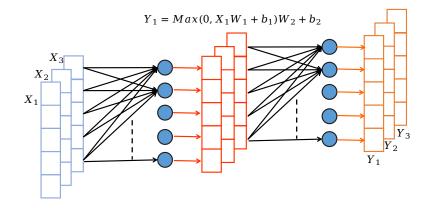


Multimedia Technology

э

< □ > < □ > < □ > < □ > < □ >

Feed Foward Layers (1)

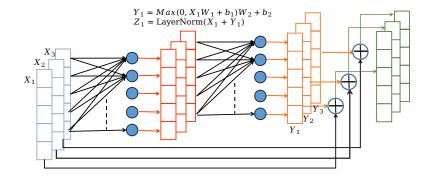


Multimedia Technology

45 / 51

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Feed Foward Layers (2)

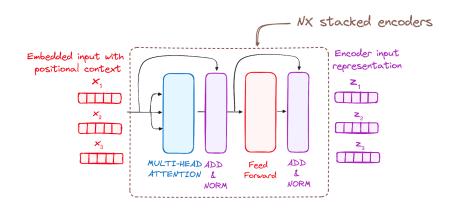


Multimedia Technology

46 / 51

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ● ● ● ●

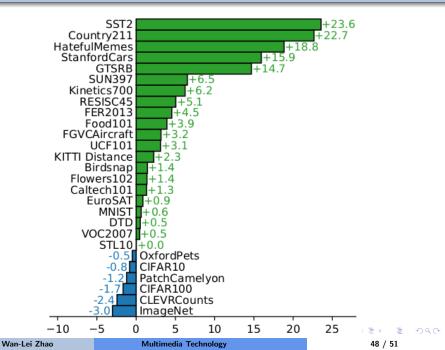
Review about Encoder



- There is no decoder for the transformer used in CLIP
- The output vectors are either cancatenated or merged into one by sum-pooling/average-pooling/max-pooling

Multimedia Technology

< ロ > < 同 > < 回 > < 回 > < 回 > <



Outline

- Instance Search
- 2 Full Convolutional Network for Instance Search
- 3 DASR for Instance Search
- 4 Text to Visual Instance Search

э

イロト イボト イヨト イヨト

- Visualizing and Understanding Convolutional Networks, Matthew D. Zeiler and Rob Fergus, ECCV 2014
- 2 Deeply Activated Salient Region for Instance Search, ACM TOMM, Hui-Chu Xiao, Wan-Lei Zhao, et. al., 2022
- 3 Learning Transferable Visual Models From Natural Language Supervision, Alec Radford, Jong Wook Kim, et. al., ICML, 2021

イロト イポト イヨト ・ヨー

Wan-Lei Zhao

Multimedia Technology

51 / 51

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 めんの