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Instance Search

Overview of Instance Search

@ Search for instances of a specific object, person, or location
@ Localize the instance in the image (given as bounding box)

©® Also known as “sub-image search”

Wan-Lei Zhao Multimedia Technology 3 /51



Instance Search

Instance Search: the problem

Database Query

® |nstance search is widely used in various multimedia applications

® video editing, image hyperlink and online shopping, etc.
® [nstance: any semantically meaningful visual subject




Instance Search

Major Challenges in Instance Search: representation (1)

® Faces similar challenges as Image Search

e But ... even more ...

Figure: Object proposals produced by “edgebox”.

@ Global representation does not work

® Keypoint features are vulnerable to object deformations

©® Bounding boxes produce too many meaningless candidates
O It requires an object level representation



Instance Search

Major Challenges in Instance Search: indexing structure (27

® Given 40 instances in one image
@ Memory consumption is one magnitude higher than image search
@ The location information should be kept with indexing structure
© The speed efficiency is one magnitude slower than image search
@ Faces similar performance degradation as the scale of problem grows



Instance Search

Overview of Instance Search
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Figure: Milestones of instance search.

e Different kinds of visual features

@ Local features: SIFT, SURF, BoVW, Fisher Vector, VLAD, etc.
® Global features: GIST, HOG, LBP, etc.
© Deep features: aggregated or quantized by BoVW or VLAD.



Instance Search

Overview: Instance Search with Deep features (1)

® |mage local features are good to describe image local regions
® Advantage

@ they cover most of the local regions

@ they are very distinctive
® Disadvantage

@ they are in big number

@ they are sensitive to deformations

© they are sometimes too distinctive

O they do not cover an object exactly



Instance Search

Overview: Instance Search with Deep features (2)

® \We are searching for an instance level feature representation

® One feature should cover exactly/approximately one instance
® Challenges and Expectations

@ Instances are in various shapes and layouts
@ Instances of the category should be similar
© Instances of the same class should be still distinctive to each other



Full Convolutional Network for Instance Search

Instance Search with Deep features: the framework (1)
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® A full convolutional neural network is trained

® |t is originally used for semantic segmentation
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Full Convolutional Network for Instance Search

Instance Search with Deep features: the framework (2)
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® The backbone network is ResNeXt

® The output are the segmentations of instances



Full Convolutional Network for Instance Search

Instance Search with Deep features: the framework (3)
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® The output are the segmentations of instances
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® ROI pooling is applied on each segmented region

® QOne instance is finally represented by one feature with uniform length
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Full Convolutional Network for Instance Search

Dataset: Instance-160

® 160 query instances are collected from 160 object tracking video

® 12,000 images are extracted from the video (dense sampling)
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Full Convolutional Network for Instance Search

Performance on Instance-160 (1)
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® Comparisons are conducted with deep features and image local
features



Full Convolutional Network for Instance Search

Performance on Instance-160 (2)
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® This approach works pretty well

® It requires a well annotated trainning set (pixel level)

Wan-Lei Zhao

15/ 51



Outline

@ Instance Search

© Full Convolutional Network for Instance Search
© DASR for Instance Search

@ Text to Visual Instance Search

© Reference

u}
o)
1
n
it

DA

C Wenldzhee DR 16/ 51



DASR for Instance Search

Existing Solutions and Challenges (1)

® |mage-search based solutions

® Features are aggregated from several local regions into a global feature
® Several weighting strategies are employed to highlight instances
® eg., R-MAC, CroW, CAM, BLCF-SalGAN, and Regional Attention

® Advantages
® Only pre-trained models are required
® Challenges

® Features are not discriminative for instance search
® The instance localization are unfeasible



DASR for Instance Search

Existing Solutions and Challenges (2)

® |nstance-level solutions

® |nstances are localized using object detection or segmentation
framework
® For instance, DeepVision, FCIS+XD and PCL*+SPN

® Advantages
® |nstance-level localizations and features are obtained
® Challenges

® The training conditions are demanding
® Generalization to the unseen categories is nearly impossible



The Aim of our Design

@ Class-agonistic

® Instance localization

® High discriminative of the instance level feature
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DASR for Instance Search

Motivation: the idea

o | U
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® The last convolution layer preserves class-agnostic clues for latent
instances

® They are not suppressed in the prediction layer yet
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DASR for Instance Search

The Last Conv. Layer: a recap

Conv + Conv + Conv + Conv +

Input Maxpool Maxpool Maxpool Maxpool

FC  FC Output

® Objects from both the known and unknown classes are activated

e After FC, the activation on the unknown objects will be suppressed
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DASR for Instance Search

The Framework

Mean activation map
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Features
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® Peaks in the forward-pass indicate the latent instances (of both
known and unknown)
® A back-propagation process is leveraged to highlight instance regions

Region-wise | _____
( Pooling ] > l

AA

® |nstance-level features are extracted with localization results
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DASR for Instance Search

Back-propagation in One Layer in Detalil
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® A top-down probability model is introduced
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DASR for Instance Search

Instance Localization with Second Moment Matrix
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® The second moment matrix is employed to estimate the instance
shape

® The final localizations are the circumscribed rectangles of the
estimated ellipses
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DASR for Instance Search

More Salient region: DASR*

® Remaining issues
® Different instances share one latent response peak
® Different peaks indicate nearly the same region

e Solutions

® More pixels are back-propagated
® Non-maximum suppression (NMS) is employed to reduce the
representation redundancy and select out the most salient regions
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Ablation Study (1): layer for feature-p
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® Experiments are conducted with ResNet-50 and Vgg-16
® Features derived from ResNet-50 are much distinctive
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Ablation Study (2)

: DASR vs. DASR*
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e DASR* outperforms DASR when 5 > 0.1

® The larger overlapping rate ( leads to better performance
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DASR for Instance Search

How about Back-propagating from the Last Layer
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e Comparing with the approaches back-propagated from the last layer,

DASR enables to localize class-agnostic instances with bounding
boxes.
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DASR for Instance Search

Instance Search Results on Two Benchmarks

Approach Model-Type | Loc. | Dim. Top_50|r‘]s‘t|?onpc_el—(?g)? Al INSTRE
R-MAC pre-trained | image | 512 0.234 0.315 0.375 | 0.523
CroW pre-trained | image | 512 0.159 0.225 0.321 0.416
CAM pre-trained | image | 512 0.194 0.263 0.347 0.320
BLCF pre-trained | image | 336 | 0.246 0.358 | 0.483 | 0.636
BLCF-SalGAN pre-trained | image | 336 0.245 0.350 0.469 | 0.698
Regional Attention | pre-trained | image | 2,048 | 0.242 0.351 0.488 0.542
DeepVision strong region | 512 0.402 0.521 0.620 0.197
FCIS+XD strong pixel | 1,536 | 0.403 0.500 | 0.593 | 0.067
PCL*+SPN weak region | 1,024 | 0.380 0.475 0.580 0.575
DASR pre-trained | region | 2,048 | 0.419 0.558 0.699 0.629
DASR* pre-trained | region | 2,048 | 0.433 0.580 | 0.724 | 0.647
DASR-m pre-trained | region | 2,048 | 0.411 0.533 0.662 0.671
DASR-m* pre-trained | region | 2,048 | 0.428 0.560 0.694 0.692

® DASR outperforms many weakly supervised approaches

® The only pre-trained model that achieves region level localization
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DASR for Instance Search

Localization Accuracy
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® DASR* shows superior performance compared to weakly supervised
model PCL*+SPN

WorleiZzhoo T 30/ 51



DASR for Instance Search

Instance Search Results in Large-scale
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® DASR* outperforms all the approaches, including FCIS+XD based on

a fully supervised model
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DASR for Instance Search

Instance Search Samples

® |t is meaningful even for false-positive samples
® DASR fails when the object is in small-scale (< 32x32 pixels)



DASR for Instance Search

DASR for Image Search: the idea

® DASR features are considered as instance level features

® DASR features could be aggregated into image level feature via VLAD
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DASR for Instance Search

Image Search Results

[ Method | Dim. [ Holidays [ Oxford5k [ Paris6k ]
BoVW+HE 65,536 0.742 0.503 0.501
SIFT+VLAD* 8,192 0.664 0.359 0.391
R-MAC 512 - 0.669 0.830
CroW 512 0.851 0.708 0.797
CAM 512 0.785 0.712 0.805
BLCF 336 0.854 0.722 0.798
BLCF-SalGAN 336 0.835 0.746 0.812
Regional Attention 2,048 - 0.768 0.875
DeepVision 512 - 0.710 0.798
DASR+VLAD 8,192 0.834 0.594 0.690
DASR*+VLAD 8,192 0.873 0.613 0.744

® |t is competitive to features specfically designed for image-level search

® |t becomes possible to integrate instance-level and image-level search
under one framework
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DASR for Instance Search

How DASRs are Distributed in a Natural Image




Summary

® Advantages

® No additional training data or training stage is required
® Localization of latent foreground instances is feasible

® The pipeline can be carried out using any CNN classification network
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Text to Visual Instance Search

Motivation of Text-to-Image/Instance Search

® Given text query, we want to search for images/visual instance that
are semantically relevant

This is achieved by text descriptions paired with images

® Or “image captioning”

CLIP fills the semantic gap between image and text



Text to Visual Instance Search

What is CLIP model?

® |t is a text-image model
® Mapping text and image into the same feature space
® Support many downstream tasks

@ Zero-shot object detection

@ Image Classification
© Image generation, e.g. DALLE
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CLIP pre-training framework
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Text to Visual Instance Search

CLIP training code

_1# image_encoder — ResNet or Vision Transformer
2/# text_encoder — CBOW or Text Transformer

3)# I[n, h, w, c] — minibatch of aligned images
4/# T[n, 1] — minibatch of aligned texts

5/# W_.i[d_.i, d_e] — learned proj of image to embed
6/# W_t[d_.t, d_e] — learned proj of text to embed
7/# t — learned temperature parameter

8 # extract feature representations of each modality
9 I_f = image_encoder(l) #[n, d_i]

10 T_f = text_encoder(T) #[n, d_t]

11|# joint multimodal embedding [n, d_e]

12 l_e = I2_normalize(np.dot(I_f, W.i), axis=1)

13 T_e = I2_normalize(np.dot(T_f, W_.t), axis=1)
14|# scaled pairwise cosine similarities [n, n]
15 logits = np.dot(l_.e, T_e.T) * np.exp(t)

16 # symmetric loss function

17 labels = np.arange(n)

18 loss_i = cross_entropy_loss(logits, labels, axis=0)
19 loss_t = cross_entropy_loss(logits, labels, axis=1)
20 loss = (loss_i + loss_t)/2
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More Details about Encoder

r—- NX stocked encoders
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Self Attentions (1) _
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Self Attentions (2)

Attention weights
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Text to Visual Instance Search

Feed Foward Layers (1)

Y, =Max(0,X,W,+b)Wy + by f

!




Text to Visual Instance Search

Feed Foward Layers (2)

Y, =Max(0,X1W;+b1)W,+b,
Z, = LayerNorm(X; + Y;)

X3
X,

X1
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Text to Visual Instance Search

Review about Encoder

(,— NX stacked encoders

Ewmbedded input with \! Encoder input

positional context ! representation
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® There is no decoder for the transformer used in CLIP

® The output vectors are either cancatenated or merged into one by
sum-pooling/average-pooling/max-pooling



Text to Visual Instance Search
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