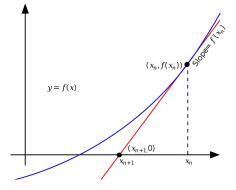
Convex Optimization

Lab 2: Newton's Method-I and Newton's Method-II

Lecturer: Dr. Wan-Lei Zhao Autumn Semester 2024

Contact: wlzhao@xmu.edu.cn

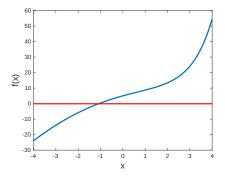
Wan-Lei Zhao


Convex Optimization

September 10, 2024

1/6

The Newton's method-l procedure


1
$$x_n = x_o$$

2 Repeat
a $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
b $x_n = x_{n+1}$
3 Until $f(x_n)$ close to 0

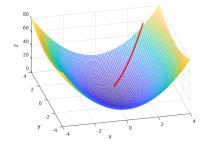
Wan-Lei Zhao	Convex Optimization	September 10, 2024	2/6
		▶ ▲ @ ▶ ▲ 문 ▶ ▲ 문 ▶ · 문	4) Q (*

Practice with **Newton's method-I** (1)

• Solve
$$e^x - x^2 + 3x + 4 = 0$$

• $f'(x) = e^x - 2x + 3$

• Notice that f(x) is defined by ourselves


• Try to solve following equations by Newton's method-I $e^x - x^2 + 3x + 4 = 0$ 6sin(x) + 5x - 2 = 05x + lnx = 10000

The Newton's method-II procedure

1
$$x_k = x_0$$

2 Repeat
3 $x_{k+1} = x_k - \frac{f'(x_k)}{f''(x_k)}$
4 $x_k = x_{k+1}$
3 Until | $f(x_k) - f(x_{k+1})$ | is close to 0

э

Practice with Newton's method (1)

1 Implementation of Newton's method-II in Section ??, Algorithm ??, try to implement Newton's method-II by MATLAB. Find the mininum for function $z = 4 * x^2 + y^2 + 5$, $x, y \in [-4, 4]$. The initial point the iteration is x = 3, y = 4.

2 Try to find the local minimal for function z = x * y + y², x, y ∈ [-6, 6] by Newton's method-II. The initial point the iteration is x = 2, y = 2. See what happens