# **Convex Optimization**

Lab 1: Gradient Descent/Ascent

Lecturer: Dr. Wan-Lei Zhao

Autumn Semester 2024

# Find out Extreme values by Gradient Descent

- 1 Initialize(x)
- 2 Repeat

$$x^+ := x - \alpha f'(x)$$

$$x = x^{+}$$

• Once we reaches the extreme, f'(x) = 0

The procedure converges



## Find out Extreme values by Gradient Ascent

- $\mathbf{0}$  Initialize(x)
- 2 Repeat

$$x^+ := x + \alpha f'(x)$$

$$x = x^{+}$$

• Once we reaches the extreme, f'(x) = 0

The procedure converges



- Requirements:
  - 1 Implement the gradient descent and ascent procedure in Matlab
  - 2 Find out the extreme values for following functions
  - 3 Visualize the descent/ascent steps of your procedure
  - 4 Build the animation for the procedure, if possible

## Problem-1

- Given function  $z = x * y + y^2$ ,  $x, y \in [-6, 6]$
- The initial point is x = 5, y = 5
- Please find the local minimal of the function



### Problem-2: train a two-class neural-network classifier



Figure: The problem and the framework of the neural network

$$f(z) = \frac{1}{1 + e^{-z}} \tag{1}$$

$$f'(z) = f(z)(1 - f(z))$$
 (2)

4 D > 4 D > 4 D > 4 D > 9

## To work out the gradient for all the variables



- Loss function:  $E = \frac{1}{2}(y y_0)^2$
- The variables in the hidden layer:  $x_1$ ,  $x_2$ , and b
- According to chain of derivative, we have

$$\frac{\partial E}{\partial w_1} = (y - y_0) \cdot f(z) \cdot (1 - f(z)) \cdot x_1 \tag{3}$$

$$\frac{\partial E}{\partial w_2} = (y - y_0) \cdot f(z) \cdot (1 - f(z)) \cdot x_2 \tag{4}$$

$$\frac{\partial E}{\partial b} = (y - y_0) \cdot f(z) \cdot (1 - f(z)) \tag{5}$$

Wan-Lei Zhao Convex Optimization September 14, 2024 7/3

#### Your task and the Answer



- Please try to implement the training of the network based on gradent descent
- Train the simple network with the provided data
- Resutls for reference:  $w_1 = 0.337$ ,  $w_2 = -0.3204$ , b = -1.0062
- Results for reference:  $w_1 = 0.9138$ ,  $w_2 = -0.8317$ , b = -2.7849

8 / 12

# A Two-layer Network (1)



- Try to train the above network by gradient descent
- The weights to be learned are:
- $W_{11} = [w_1, w_2, b], W_{12} = [w_1, w_2, b], W_{21} = [w_1, w_2, b]$

## A Two-layer Network (2)



- Resutls for reference:  $W_{11} = [1.0155, -0.8313, -2.4823]^T$ ,  $W_{12} = [0.8804, -0.5581, -2.2472]^T$
- $W_{21} = [3.8164, 2.6523, -4.2436]^T$

# A Two-layer Network (3)

```
function [Y21] = Lay2Predict(X)

W11 = [1.0155, -0.8313, -2.4823]';

W12 = [0.8804, -0.5581, -2.2472]';

W21 = [3.8164, 2.6523, -4.2436]';

Y11 = sigmoid(X*W11);

Y12 = sigmoid(X*W12);

X21 = [Y11, Y12, 1];

Y21 = sigmoid(X21*W21);

end
```

Code for prediction

## Problem-3

- Given function  $z = x^3 + y^3$ ,  $x, y \in [-6, 6]$
- The initial point is x = -5, y = -5
- Please find the local maximal of the function



