Assignment-4

- 1. A set C is midpoint convex if whenever two points a, b are in C, the average or midpoint (a + b)/2 is in C. Obviously a convex set is midpoint convex. It can be proved that under mild conditions midpoint convexity implies convexity. As a simple case, prove that if C is closed and midpoint convex, then C is convex.
- 2. Let $C \subseteq \mathbb{R}^n$ be a convex, with $x_1, \dots, x_k \in C$, and let $\theta_1, \dots, \theta_k \in \mathbb{R}$ satisfy $\theta_i \geq 0, \ \theta_1 + \dots + \theta_k = 1$. Show that $\theta_1 x_1 + \dots + \theta_k x_k \in C$ for $k \geq 3$.
- 3. Show that the convex hull of a set S is the intersection of all convex sets that contain S.
- 4. Given function $f(x) = -5x^2 + 5x$, work out its conjugate function and plot it out
- 5. Suppose $f: S \subset R \to R$ is convex. Let $a, b \in S$ and a < b. Show

$$f(x) \le \frac{b-x}{b-a} f(a) + \frac{x-a}{b-a} f(b), \quad \forall x \in [a,b]$$

$$\tag{1}$$

- Hints
 - 1. Submission due: 2024/Nov./30
 - 2. Submit to lecwlzhao@163.com, email title "assigment4_your-name + your student number"