C Programming
Lecture 2: Primitive
Data Types & Expressions

12 00001100
+.13 = + 11110011
-1 11111111

Lecturer: Dr. Wan-Lei Zhao
Spring Semester 2022

Er A

1/71

wil=ha~ra@Ovimi adir rn ranvriahte ara fiilllyy vacaread by +ha anivrhAr



Outline

@ Basics about Data Representation

Dae
2/71



Everything is binary code in computer (1)

Everything in computer is in binary form
Data: integers, real numbers and strings
Instructions

Addresses: sequential numbers for the memory cells

m It is therefore necessary to know how the binary code is produced
m In addition, for convenience

m Octal and Hexadecimal numbers are also used for display



Everything is binary code in computer (2)

m Anyone watched this movie?



Decimal to Binary, Octal and Hexadecimal (1)

Decimal to binary Decimal to octal Decimal to hexadecimal

1| 49 »i\i »i\i

6 3

10 - A
11 - B
12 -C
13- D
3 14 - E
15 - F

Binary code: 1100012
Octal code: 61(s)

Hexadecimal code: 31 46)

Can you figure out the relation between them



Decimal to Binary, Octal and Hexadecimal (2)

m Try it by yourself to convert 60 to

m Binary code:
m Octal code:
m Hexadecimal code:

WorleiZzhoo ST 6/ 71



Decimal to Binary, Octal and Hexadecimal (2)

Try it by yourself to convert 60 to
Binary code: 111100(3)
Octal code: 74g)

Hexadecimal code: 3C¢)



Decimal to Binary, Octal and Hexadecimal (3)

Decimal to binary Decimal to octal Decimal to hex
0| 60 v4| 60 »C| 60
A s
10 - A
11 - B
12 - C
3 13- D
14 - E

1 15-F

Wan-Lei Zhao

8/71



Decimal to Binary, Octal and Hexadecimal (4)

Decimal fraction to binary

0| 0.3137
1| 0.6274
0|0.2548
1| 0.5096
0|0.0192

« 0]0.0384

0x27 1 +1x272 + 0x273 + 1x27% = 0.3125 ~ 0.3137

Wrleizieo DR /71



Binary, Octal and Hexadecimal to Decimal

m Binary code: 1111002
m Octal code: 74(8)

m Hexadecimal code: 3((y4)

I1x224+1x2+1x2834+1x224+0x2'+0x2°=60
7x8' +4x8 =60
3x 16" +12 x 16° = 60

WorleiZzhoo ST 07



Data in the memory (1)

m Data in the memory is kept in binary form
m Given an integer 49, its binary code is 110001 )

m It is kept in following form

(0 1 J1 Jo Jo Jo J1 ]

Given an integer -49, its binary code is 1110001 5)
It is kept in following form

(1 1 [1 [0 [0 JO [1 ]

The highest bit is reserved for sign
This is true for real numbers later we will see

We use 8 bits (1 byte), 2 bytes or more bytes to keep a number

(1 [0 1 [1 JOo 0 [0 [1 ]




Data in the memory (2)

m Data in the memory is kept in binary form
m Given we have several numbers to be kept
m They are kept one after another (assume we use 1 byte for one

number)
0000 [0 1 T1 T0 0 T0 [1]
0001 [0 [0 [1 1 T0 [0 [1 1]
0002 [0 [1 o 1 T1 1 T0 1]
0003

Wrleizieo DR 27



Data in the memory (3)

m Now, think about an important issue
m Given 1 byte, how many different numbers we can represent

m Assuming no sign bit

PR [2]rf1fajaf1f1]a]

m With 1 byte, there are 28 = 256 numbers

m Since our memory are limited, we can only represent a limited range
of numbers

Wrleizieo DR 3/7



Data in the memory (4)

m Now, think about how many different numbers we have if one bit is
reserved for sign
m 7777



Data in the memory (5)

m Now, think about how many different numbers we have if one bit is
reserved for sign

m 2x2" —1=255
m Only 127 positive numbers (1 ~ 127)
m 127 negatives (-1 ~ -127)

m Some numbers can only be approximately represented by binary code
m For example, 3.3137
m 11.0101y



One's complement and Two's Complement

Original bits One's Complement | Two's Complement
23 00010111 00010111 00010111
-23 10010111 11101000 11101001
33 00100001 00100001 00100001
-33 10100001 11011110 11011111

m One's complement and two's complement of positive numbers are the
same as original code

m For negative number, we do not inverse its sign bit
m Why we do so??

m It is very convenient when we do substraction
m Substraction is converted to add operation

m Now please work out one's complement and two's complement of -17

Wan-Lei Zhao C Programming 16 /71



Outline

e Data types

Qe
17/ 71



Data Types Supported in C

—» int

—» char float
I—>

L} double

L enum

Primitive

—» Array, e.g., int a[3]

Constructivel— g i/t

Data type
—» union

Pointers
» E.g., float *p

WorleiZzhoo ST 1871



Integer numbers

m Keywords: int, short, long
m Can be signed (default) or unsigned
m Actual size of int, short, long depends on architecture

int a; /*Range: —2,147,483,648 to 2,147,483,647x%/
short b; /*Range: —32,768 to 32,767x/

long c; /+*Range: —2,147,483,648 to 2,147 ,483,647%/
unsigned int al; /*Range: 0 to 4,294,967,297x/

unsigned short bl; /*Range: 0 to 65,535%/

m int and long take 4 bytes (32 bits system)
m short takes 2 bytes

WorleiZzhoo ST 1971



Integer numbers

m Keywords: int, short, long
m Can be signed (default) or unsigned

m Actual size of int, short, long depends on architecture

short | I |

int | I I I |
long | I I I |

int a; /*Range: —2,147,483,648 to 2,147,483,647%/
short b; /*Range: —32,768 to 32,767x%/

long c; /+*Range: —2,147,483,648 to 2,147,483,647x/
unsigned int al; /*Range: 0 to 4,294,967,297x%/

unsigned short bl; /«Range: 0 to 65,535%/

[m] = -

20/ 71



Integer numbers

int main()

short a = 0x8000;
short b = Ox7FFF;
short ¢ = OxFFFE;

char d = 0x80;

printf("a.="%d, _b.=%d, .c.=%d\n", a, b, c);
printf("d.="6d\n", d);

return 0;

WorleiZzhoo ST n/n



The Problem of Overflow (1)

m Given following code, anything wrong??

int main()

{
unsigned short b = 65537;

return 0;

WorleiZzhoo ST 2/



The Problem of Overflow (2)

m Given following code, anything wrong??
int main()

unsigned short b = 65537;
return O;

m b will never reach to 65537
m In this case, it is 65535

m Guess the value of b in following code
int main()

short b = 65537;
return 0;

Wrleizieo DR B/



The Problem of Overflow (3)

m The same problem exists for all primitive data types

m Because, we only use limited bytes to represent the data
m Be careful when you assign big value to a variable

m Tricks: estimate how big it could be

WorleiZzhoo ST /1



Floating point numbers (1)

m Keywords: float, double, long double
m Real numbers: x € R

m Due to limited memory, only 4 bytes/8 bytes are used for float/double
m So it will not cover the whole range of R

float [Trwrer [ s [ _an ][ ]

sign

[3.14159]

0 0000100 110010010000111111001110

|
| +—— significand = 0.7853975
|

exponent = 4

sign = 0 (positive)

Wrleizieo DR %7




Floating point numbers (2)

m Keywords: float, double, long double

float x = 0.125; /*Precision: 7 to 8
digitsx*/

double y = 111111.111111; /*Precision: 15 to 16
digitsx*/

m Now you should know a very useful operator sizeof(.)

#include <stdio.h>
int main()

{

float x = 0.125;

double y = 111111.111111;

printf(” float: %d,_double: %d”, sizeof(x), sizeof(y));
}

WorleiZzhoo ST 2%/ 71



Characters (1)

m Keyword: char

m Can be signed (default) or unsigned

m Size: 1 Byte (8 bits) on almost every architecture
m Intended to represent a single character

m Stores its ASCII number (e.g. 'A" = 65)

m You can define a char either by its ASCIl number or by its symbol:

65;
A /+xuse single quotation marksx/

char a
char b

Wrleizieo DR 7/



Characters (2)

m Essentially, char uses 1 byte to represent 255 characters

m Each integer is associated with a character

m American Standard Code for Information Interchange (ASCII)

0| NUL 16| DLE 32| SPC 48| 0 64l @ 80| P 96 112 p
1| SOH 17| DC1 33 ! 49 1 65 A 81 Q 97| a 113 g
2| 5Tx 18| DC2 3af " 500 2 66| B 82| R 98| b 114 r
3| ETX 15| DC3 35| # 31 3 67| C 83| § 99| ¢ 115 s
4| EOT 20| DC4 36| S 52 4 68| D B4 T w0l d 116 t
S| ENQ 21| NAK 37 % 53| 5 69| E 85| U 101 e 117) u
6| ACK 22| SYN 38 & 54| 6 70| F 86| WV w2 f 118 v
7| BEL 23| ETB 39 ' 53 7 71l G 87 W 103 g 119 w
8| BS 24| CAN 40| | 56| 8 72| H 83| X 104 h 120 x
9| HT 25| EM 11| ) 57| 9 EEI 89 ¥ 105 i 121 vy
10| LF 26| SUB 42| = 58| : 74 ] E 106] j 122| =z
11| VT 27| ESC 43| + 39 75 K 91| [ 107 k 123 {
12| FF 28| FS 4, 60| < 76 L 92| \ 108 | 124| |
13| CR 29| GS 45| - 6L = Il M 93| 1 109 m 125 }
14| 50 30| RS 46| . 62| > 78 N 94| ~ 110 n 126 ™~
15| & 31| Us a7 63 7 79 O 95 _ 111] o 127| DEL
Wan-Lei Zhao C Programming 28 /171



Characters (3)

m There are some frequently used ones you should know

ASCIl | value ASCIl | value
0~9 | 48~57 || A~Z | 65~90
a~z | 97~122 L 32
\n 10 \t 9

[Code]

#include <stdio.h>
int main()

[Output]

{
printf("A: %d %c\n", 'A", 'A"); )
printf(”1: %d %c\n", "1", "1"); ? 1613 ?
printf("B: %d %c\n", 66, 66); B: 66 B
printf(”2:.%d.%c\n", 50, 50); 2'_ 50 2
) :

Wrleizieo 29/7



Data type and its size

char [

short | | |

int | | I I

|
long | I I I
float | I I I |

double| [ [ [ — ]

1 2 3 4 8

m You should clearly know what is the use of your data
m One should not define data in double/long double just for convenience
m It wastes a lot of memory

m String: an array of chars

WorleiZzhoo ST 07



Outline

© Variables and Constants



Variable: valid identifiers (1)

Consist of English letters (a-z, A-Z), numbers (0-9) and underscore (-)
Start with a letter (a-z, A-Z) or underscore ()
Are case sensitive (number differs from Number)

Must not be reserved words (e.g int, return)

Check which are valid identifiers

distance
milesPerHour

X-ray

2ndGrade

$amount
_2nd

two&four

_hi

return




Variable: valid identifiers (1)

m Consist of English letters (a-z, A-Z), numbers (0-9) and underscore ()

m Start with a letter (a-z, A-Z) or underscore (-)
m Are case sensitive (number differs from Number)
m Must not be reserved words (e.g int, return)
m Check which are valid identifiers
distance V
milesPerHour | /
x-ray X
2ndGrade X
$amount X
2nd V
two&four X
_hi V
return X




Variable: valid identifiers (2)

0w N o s W N =

m Recommended style

m Stay in one language (English recommended)
m Decide whether to use camelCaseldentifiers or snake_case_identifiers
m When nesting blocks, indent every inner block by one additional tab!

#include <stdio.h>
int main()

{

float width = 3.0, height = 5.0, area = 0.0;
area = widthxheight;

printf (" Area_is: %f\n", area);

return O;

Wrleizieo DR -



Speaking identifiers

g W N R

oA W N =

/x calculate volume of square pyramid x*/

int a,
a = 3;
b =2

b,

c;

c=1(1/3) xax*xa=xb;

¢

/* calculate volume of square pyramid x*/

int length
length = 3;
height = 2;
volume = (1
Wan-Lei Zhao

height , volume;

/ 3) % length % length % height;

35 /71



Constants

0 N o s W N

m Put key word ‘const’ before and type of variable definition

m The variable(s) become(s) constant(s)

m Constant means that you are not allowed to change the value after
the definition

const int a

=5, b = 6;
const float c =

2.1;

#include <stdio.h>
int main()

{

const float Pl = 3.14159;

float r = 3.0, area = 0.0;

Pl = 3.14; /xInvalidx/

area = Plxrxr; /*'area' has been updated herex/
}

Wrleizieo DR 3671



Variables and Constants

01010100 01010011 01010010 01010001

int a; I | | | |
a

) 01010100 01010011 01010010 01010001

int a=3; [ 0 Il o | o [oooooo11|
a

) 01010100 01010011 01010010 01010001

constinta=3; &0 | 0 ][ 0 Joooooout]
a

WorleiZzhoo ST w/n



Outline

@ Variable Input/Output

Dae
38 /71



printf() with placeholders (1)

m printf(” %d ...%f ...%Id"”, d1, d2, d3)
m A function pre-defined by C

m It is in charge of print things onto screen

m You should organize your things in special format
[Codes]

#include <stdio.h>
int main()

{

int a =1,

float b = 3.1;
char ¢ = 'h’;
printf("a: %d\n"
printf("b: %f\n"
printf(”c: %c\n"
printf(”a

Wan-Lei Zhao

,a);
. b);
. )
s %d, e Yc\n",

[Output]
a: 1

b: 3.1
c: h

a: 1, c:

39 /71



printf() with placeholders (2)

“%x" is called placeholder
It holds/occupies the place that is replaced by output data

Different output data require different placeholders

The order of placeholders corresponds to the order of output

m The number of placeholders corresponds to the number of output
[Codes]

#include <stdio.h>

int main() [Output]
{ .
int a = 3; E: g
int b =05; c: 7.4
float ¢ = 7.4; ’ ’
printf("a: %d\nb: %d\nc: %f\n", a, b, ¢);



Supported placeholders

m The placeholder determines how the value is interpreted.

type description type of argument
Yoc single character char, int (if <= 255)
%d decimal number char, int
%u | unsigned decimal number | unsigned char, unsigned int
%x hexadecimal number char, int
%Id long decimal number long
%f floating point number float, double
%If double number double

Wan-Lei Zhao C Programming

a/n



printf() by example

m printf(” %d ...%f ...%Id"”, d1, d2, d3)

m A function pre-defined by C
[Codes]

#include <stdio.h>
int main()

{
int a =79;
char b = 'n’; Output
printf("a: %d,_b: %d\n", a, b); [ put]
printf("a: %c,_b: %c\n", a, b);
printf("a:%x,.b: %x\n", a, b);

}

Wonrleizio DR 2/



printf() by example

m printf(” %d ...%f ...%Id"”, d1, d2, d3)
m A function pre-defined by C

[Codes]

#include <stdio.h>

}nt main () [Output]
int a = 79; a: 79, b: 110
char b = 'n’"; a: O, b: n
printf("a: %d,.b: %d\n", a, b); a: 4f, b: 6e

printf("a: %c,.b: %c\n", a, b);
printf("a: %x,.b: %x\n", a, b);

Wonrleizio DR B/



Escape Character in ASCII (1)

m There are some special character to be print out
m “Tab", “Enter”, “backspace”
m We want to express it by one character in ASCII

m But....
m All characters have their own use

m If we want to use them to express different meaning
m We use "\



Escape Character in ASCII (2)

m All characters have their own use

m If we want to use them to express different meaning

m We use '\’

ESC | their charactor

\t | Tab

“\b" | back one character

‘\r' | return to the start if a line
‘\n" | go to the next line
AN

\" | single quote: '

\"" | double quote: "

m Remember that it is one character: \"

m It is valid: "\b’

Wan-Lei Zhao

45 / 71



Variable input

m scanf(” %d...%f", &a, &b) is another useful function
m Like printf(), it is declared in stdio.h
m Like printf(), it has a format string with placeholders

m You can use it to read values of primitive datatypes from the
command line

Example:

int i;

scanf("%d", &i);

m Notice that there is “&" before the variable
m This operator takes the address of the variable
m When buy goods online, you should put your the address

m The postman will transfer the goods (value) to your mailbox
(variable)



Notes for scanf

m scanf() uses the same placeholders as printf()

m You must type an & before each variable identifier
m If you read a number (using %d, %u etc.), interpretation

m Starts at first digit

m Ends before last non digit character
mEg: 223

m If you use %c, the first character of the user input is taken



scanf() by example

m scanf(” %d ...%f ...%Id"”, &d1, &d2, &d3)
m A function pre-defined by C

[Codes]

#include <stdio.h>

}nt main () [Output]
int a =179; a: 79, b: 0.1
float b = 0.1; Input a and b: xx xx.
printf("a:%d,.b: %f\n", a, b); XX
printf("Input.acandob:l”); a: xx, b: xx.xx

scanf ("%d%f", &a, &b);
printf("a: %d,_b: %f\n", a, b);

Warleizio DT e



Outline

© Data Operators and Expressions



Overview about Expressions

m Legal expressions consist of legal combinations of
m Constants: const float Pl = 3.14
m Variables: int a, b;
m Operators: +,-
m Function alls, printf(" %d", a)

WorleiZzhoo ST 50/ 71



Vadlid Operators in C

m Operators
Arithmetic: +,-.*, /, %
Relational: ==, 1=, >,<, <=, >=
Logical: &&, !, ||
&, —, 7
<<, >>

WorleiZzhoo ST 51771



Arithmetic Operators in C

m Rules for operator precedence

| Operator | Operation Precedence |
O Parenthese Evaluated first
*/ or % | multiplication, division | evluated second
+ or - addition, substraction | evaluated last

m Take average of three numbers

m 142+4/3 77

52 /71



Precedence Example

(2+3+5)/3
5 ((2+6) (1)

int avg = (2 + 3 + 5)

/3;
float x=5%((2+6)%2);

int avg =2 + 3 + 5/3;
float x=5x2+6%2;

m Try to use “()" to clarify, if you are uncertain about the precedence

WorleiZzhoo ST 53,71



Division Operator (1)

m Generates a result that is the same data type of the largest operand
used in the operation

m Dividing two integers yields an integer result

[Result]
5/2 )
17/5 3



Division Operator (2)

m Generates a result that is the same data type of the largest operand
used in the operation

m Dividing two integers yields an integer result

[Result]
5.0/2 55
17.0/5 34



Modulus Operator %

m Modulus Operator % returns the remainder

m Dividing two integers yields an integer result

[Result]
17%5 2
12%3 0

WorleiZzhoo ST 56 /71



Evaluating Arithmetic Expressions (1)

m See whether you can work out the answer

11/2
11%2

11/2.0 [Result]
5.0/2



Evaluating Arithmetic Expressions (2)

m Check your answer

[Result]
11/2 5
11%2 1
11/2.0 55
5.0/2 s

TR T 58 /71



Arithmetic Expressions (1)

[Arithmetic Expression] [Expression in C]

a a/b
b 2% X
2x (x=7)/(2+3xy)
x—=7
2+ 3y
Wonleizhao R —

59 / 71



Arithmetic Expressions (2)

[Arithmetic Expression]

2 x (=3)
4 x 5 — 15
2 x5

~

* X O~ O~~~ N
o

= ¥ Ol
o o1 ©

+5 /2

MO poODNDNNODNSNSN P
N4+ o~ 0N

/2 + 5 % 2

WorleiZzhoo ST 60 /71



Arithmetic Expressions (3)

[Arithmetic Expression] [Results]
2 x (=3) —6
4 % 5 — 15 5
4 + 2 x5 14
7/2 3
7/ 2.0 3.5
2 /5 0
2.0 / 5.0 0.4
2 /5 %5 0
20+ 1.0 +5 /2 5.0
5% 2 1
4 % 5/2 + 5% 2 11

WorleiZzhoo ST 61,71



Data Assignment

m Assig value to variable in accordance with its type

int main()
{ .
Int a;
a = 2.99;
printf(”a.=%d"
}

,a);

[Output]

a =2

m Comments: above expression is valid, but NOT suggested

62 /71




Shortcut assignment Operators (1)

Wan-Lei Zhao

Assignment Shortcut
d=d-4 d-=4

e = e*5 e*=5
=E f/=3

g = g%9 g %=9

m = m*(5 + 3) | m *= 543
k=k/(5+1) | m/=5+1
k = k/(5*7) k /= 5*7

63/ 71



Shortcut assignment Operators (2)

a += 4, /¥ a = a + 4;
a — 4; /*x a =a — 4;
a = b; /¥ a = a % b;
b /= 4+2; /* b=Db / (442
b %= 2+3; /¥ b =Db % (2+3)




Shorthand Operators (1)

m Incremental operator: ++
m i++ equivalent toi = i+1
m Decremental operator: —
m i— equivalent to i = i-1
m When they are used alone
m i++ and ++i behave the same as
mi=i+1

m Similar comment applies to —

WorleiZzhoo ST 65 /71



Shorthand Operators (2)

When they appear in a compound expression, things are different
a=i+-+ will be different from a=+-+i

[
n
m In a=i++, i contributes its value to a first, then self-increments
m In a=++i, i self-increments first, then contributes its value to a
n

Similiar comments apply to i— and —i

int main()
int main() {
int a, i = 4
int a, b, i = 4; a = i;
a = i++; =i+ 1
b = ++i; =1+ 1
} b=1i;
}




Shorthand Operators (3)

m Now verify how much you understand

int main()

{
int a, b, i = 4; [Output]
a = i— a=7 b=7
b =—i;
printf("a.=%d, .b_.=2%d\n" , a, b);

TR T 67/ 71



Conditional Operator

m Conditional Operator: logic_expl?exp2:exp3
m Three operands
m If logic_expl is none zero, takes exp2

m If logic_expl is zero, takes exp3

int main()

{
int a=2,b=23,i=4; [Output]
a =b>i?b:i; a—4, b=2
b = b==372:1;
printf("a.="%d,_b_="%d\n", a, b);
}
Wonleizieo 6 /71




Outline

@ Implicit and Forceful Data Type Casting

Dae
69 /71



Implicit Data Type Casting

m See whether you can work out the answer

a=c+6+3.1+1.7e5

char int float double
char ¢ = 'x"; int
double a = c + 5 4+ 1.3 + 1.73e4; float
\ double
\J
double

m Above type castings are done automatically (implicitly)
m Code below is risky, rear part will be truncated

int a = 0;
a=5.1;

Wrleizio DR 07



Explicit (forceful) Data Type Casting

m See whether you can work out the answer

a =ﬂ(f!o%t)lc + (floﬂat)6 +3.1+1.7e5
loal loal loat

char ¢ = 'x'; double
double a = (float)c + (float)5 +
1.3 + 1.73e4;

int

float float

float

\
double
m Above type castings are done forcefully
m Again it is risky sometimes
int a = 0; int a = 0;
float b = 5.4; float b = 5.4;
a = (int)b; a = (int)round(b);

Wrleizieo DR n/n



	Basics about Data Representation
	Data types
	Variables and Constants
	Variable Input/Output
	Data Operators and Expressions
	Implicit and Forceful Data Type Casting

